MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval Unicode version

Theorem cantnfval 7369
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.1  |-  S  =  dom  ( A CNF  B
)
cantnfs.2  |-  ( ph  ->  A  e.  On )
cantnfs.3  |-  ( ph  ->  B  e.  On )
cantnfval.3  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cantnfval.4  |-  ( ph  ->  F  e.  S )
cantnfval.5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
Assertion
Ref Expression
cantnfval  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
Distinct variable groups:    z, k, B    A, k, z    k, F, z    S, k, z   
k, G, z    ph, k,
z
Allowed substitution hints:    H( z, k)

Proof of Theorem cantnfval
Dummy variables  f 
g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . . 4  |-  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin }  =  { g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin }
2 cantnfs.2 . . . 4  |-  ( ph  ->  A  e.  On )
3 cantnfs.3 . . . 4  |-  ( ph  ->  B  e.  On )
41, 2, 3cantnffval 7364 . . 3  |-  ( ph  ->  ( A CNF  B )  =  ( f  e. 
{ g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin } 
|->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) )
54fveq1d 5527 . 2  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( ( f  e.  { g  e.  ( A  ^m  B
)  |  ( `' g " ( _V 
\  1o ) )  e.  Fin }  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) `  F
) )
6 cantnfval.4 . . . 4  |-  ( ph  ->  F  e.  S )
7 cantnfs.1 . . . . 5  |-  S  =  dom  ( A CNF  B
)
81, 2, 3cantnfdm 7365 . . . . 5  |-  ( ph  ->  dom  ( A CNF  B
)  =  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin } )
97, 8syl5eq 2327 . . . 4  |-  ( ph  ->  S  =  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin } )
106, 9eleqtrd 2359 . . 3  |-  ( ph  ->  F  e.  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin } )
11 vex 2791 . . . . . . . 8  |-  f  e. 
_V
1211cnvex 5209 . . . . . . 7  |-  `' f  e.  _V
13 imaexg 5026 . . . . . . 7  |-  ( `' f  e.  _V  ->  ( `' f " ( _V  \  1o ) )  e.  _V )
14 eqid 2283 . . . . . . . 8  |- OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' f " ( _V  \  1o ) ) )
1514oiexg 7250 . . . . . . 7  |-  ( ( `' f " ( _V  \  1o ) )  e.  _V  -> OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  e. 
_V )
1612, 13, 15mp2b 9 . . . . . 6  |- OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  e. 
_V
1716a1i 10 . . . . 5  |-  ( f  =  F  -> OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  e. 
_V )
18 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  h  = OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) ) )
19 simpl 443 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  f  =  F )
2019cnveqd 4857 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  `' f  =  `' F )
2120imaeq1d 5011 . . . . . . . . . . . . . . . . 17  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( `' f
" ( _V  \  1o ) )  =  ( `' F " ( _V 
\  1o ) ) )
22 oieq2 7228 . . . . . . . . . . . . . . . . 17  |-  ( ( `' f " ( _V  \  1o ) )  =  ( `' F " ( _V  \  1o ) )  -> OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) ) )
2321, 22syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  -> OrdIso (  _E  ,  ( `' f " ( _V  \  1o ) ) )  = OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) ) )
2418, 23eqtrd 2315 . . . . . . . . . . . . . . 15  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  h  = OrdIso (  _E  ,  ( `' F " ( _V  \  1o ) ) ) )
25 cantnfval.3 . . . . . . . . . . . . . . 15  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
2624, 25syl6eqr 2333 . . . . . . . . . . . . . 14  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  h  =  G )
2726fveq1d 5527 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( h `  k )  =  ( G `  k ) )
2827oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( A  ^o  ( h `  k
) )  =  ( A  ^o  ( G `
 k ) ) )
2919, 27fveq12d 5531 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( f `  ( h `  k
) )  =  ( F `  ( G `
 k ) ) )
3028, 29oveq12d 5876 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  =  ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) ) )
3130oveq1d 5873 . . . . . . . . . 10  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z )  =  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
32313ad2ant1 976 . . . . . . . . 9  |-  ( ( ( f  =  F  /\  h  = OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) ) )  /\  k  e.  _V  /\  z  e.  _V )  ->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
)  =  ( ( ( A  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
3332mpt2eq3dva 5912 . . . . . . . 8  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) )  =  ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) )
34 eqid 2283 . . . . . . . 8  |-  (/)  =  (/)
35 seqomeq12 6466 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( h `  k ) )  .o  ( f `  (
h `  k )
) )  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
3633, 34, 35sylancl 643 . . . . . . 7  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  -> seq𝜔
( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
37 cantnfval.5 . . . . . . 7  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( A  ^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
3836, 37syl6eqr 2333 . . . . . 6  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  -> seq𝜔
( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) )  =  H
)
3926dmeqd 4881 . . . . . 6  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  dom  h  =  dom  G )
4038, 39fveq12d 5531 . . . . 5  |-  ( ( f  =  F  /\  h  = OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) ) )  ->  (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  =  ( H `
 dom  G )
)
4117, 40csbied 3123 . . . 4  |-  ( f  =  F  ->  [_OrdIso (  _E  ,  ( `' f
" ( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
)  =  ( H `
 dom  G )
)
42 eqid 2283 . . . 4  |-  ( f  e.  { g  e.  ( A  ^m  B
)  |  ( `' g " ( _V 
\  1o ) )  e.  Fin }  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )  =  ( f  e.  { g  e.  ( A  ^m  B )  |  ( `' g " ( _V  \  1o ) )  e.  Fin }  |->  [_OrdIso (  _E  ,  ( `' f " ( _V 
\  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) )
43 fvex 5539 . . . 4  |-  ( H `
 dom  G )  e.  _V
4441, 42, 43fvmpt 5602 . . 3  |-  ( F  e.  { g  e.  ( A  ^m  B
)  |  ( `' g " ( _V 
\  1o ) )  e.  Fin }  ->  ( ( f  e.  {
g  e.  ( A  ^m  B )  |  ( `' g "
( _V  \  1o ) )  e.  Fin } 
|->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) `  F
)  =  ( H `
 dom  G )
)
4510, 44syl 15 . 2  |-  ( ph  ->  ( ( f  e. 
{ g  e.  ( A  ^m  B )  |  ( `' g
" ( _V  \  1o ) )  e.  Fin } 
|->  [_OrdIso (  _E  , 
( `' f "
( _V  \  1o ) ) )  /  h ]_ (seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( A  ^o  ( h `
 k ) )  .o  ( f `  ( h `  k
) ) )  +o  z ) ) ,  (/) ) `  dom  h
) ) `  F
)  =  ( H `
 dom  G )
)
465, 45eqtrd 2315 1  |-  ( ph  ->  ( ( A CNF  B
) `  F )  =  ( H `  dom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788   [_csb 3081    \ cdif 3149   (/)c0 3455    e. cmpt 4077    _E cep 4303   Oncon0 4392   `'ccnv 4688   dom cdm 4689   "cima 4692   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860  seq𝜔cseqom 6459   1oc1o 6472    +o coa 6476    .o comu 6477    ^o coe 6478    ^m cmap 6772   Fincfn 6863  OrdIsocoi 7224   CNF ccnf 7362
This theorem is referenced by:  cantnfval2  7370  cantnfle  7372  cantnflt2  7374  cantnff  7375  cantnf0  7376  cantnfp1lem3  7382  cantnflem1  7391  cantnf  7395  cnfcom2  7405
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-oi 7225  df-cnf 7363
  Copyright terms: Public domain W3C validator