MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofdir Unicode version

Theorem caofdir 6114
Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
caofdi.1  |-  ( ph  ->  A  e.  V )
caofdi.2  |-  ( ph  ->  F : A --> K )
caofdi.3  |-  ( ph  ->  G : A --> S )
caofdi.4  |-  ( ph  ->  H : A --> S )
caofdir.5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K ) )  -> 
( ( x R y ) T z )  =  ( ( x T z ) O ( y T z ) ) )
Assertion
Ref Expression
caofdir  |-  ( ph  ->  ( ( G  o F R H )  o F T F )  =  ( ( G  o F T F )  o F O ( H  o F T F ) ) )
Distinct variable groups:    x, y,
z, A    x, F, y, z    x, G, y, z    ph, x, y, z   
x, H, y, z   
x, K, y, z   
x, O, y, z   
x, R, y, z   
x, S, y, z   
x, T, y, z
Allowed substitution hints:    V( x, y, z)

Proof of Theorem caofdir
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofdir.5 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K ) )  -> 
( ( x R y ) T z )  =  ( ( x T z ) O ( y T z ) ) )
21adantlr 695 . . . 4  |-  ( ( ( ph  /\  w  e.  A )  /\  (
x  e.  S  /\  y  e.  S  /\  z  e.  K )
)  ->  ( (
x R y ) T z )  =  ( ( x T z ) O ( y T z ) ) )
3 caofdi.3 . . . . 5  |-  ( ph  ->  G : A --> S )
4 ffvelrn 5663 . . . . 5  |-  ( ( G : A --> S  /\  w  e.  A )  ->  ( G `  w
)  e.  S )
53, 4sylan 457 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( G `  w )  e.  S )
6 caofdi.4 . . . . 5  |-  ( ph  ->  H : A --> S )
7 ffvelrn 5663 . . . . 5  |-  ( ( H : A --> S  /\  w  e.  A )  ->  ( H `  w
)  e.  S )
86, 7sylan 457 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( H `  w )  e.  S )
9 caofdi.2 . . . . 5  |-  ( ph  ->  F : A --> K )
10 ffvelrn 5663 . . . . 5  |-  ( ( F : A --> K  /\  w  e.  A )  ->  ( F `  w
)  e.  K )
119, 10sylan 457 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  K )
122, 5, 8, 11caovdird 6038 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( ( G `  w ) R ( H `  w ) ) T ( F `
 w ) )  =  ( ( ( G `  w ) T ( F `  w ) ) O ( ( H `  w ) T ( F `  w ) ) ) )
1312mpteq2dva 4106 . 2  |-  ( ph  ->  ( w  e.  A  |->  ( ( ( G `
 w ) R ( H `  w
) ) T ( F `  w ) ) )  =  ( w  e.  A  |->  ( ( ( G `  w ) T ( F `  w ) ) O ( ( H `  w ) T ( F `  w ) ) ) ) )
14 caofdi.1 . . 3  |-  ( ph  ->  A  e.  V )
15 ovex 5883 . . . 4  |-  ( ( G `  w ) R ( H `  w ) )  e. 
_V
1615a1i 10 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) R ( H `
 w ) )  e.  _V )
173feqmptd 5575 . . . 4  |-  ( ph  ->  G  =  ( w  e.  A  |->  ( G `
 w ) ) )
186feqmptd 5575 . . . 4  |-  ( ph  ->  H  =  ( w  e.  A  |->  ( H `
 w ) ) )
1914, 5, 8, 17, 18offval2 6095 . . 3  |-  ( ph  ->  ( G  o F R H )  =  ( w  e.  A  |->  ( ( G `  w ) R ( H `  w ) ) ) )
209feqmptd 5575 . . 3  |-  ( ph  ->  F  =  ( w  e.  A  |->  ( F `
 w ) ) )
2114, 16, 11, 19, 20offval2 6095 . 2  |-  ( ph  ->  ( ( G  o F R H )  o F T F )  =  ( w  e.  A  |->  ( ( ( G `  w ) R ( H `  w ) ) T ( F `  w
) ) ) )
22 ovex 5883 . . . 4  |-  ( ( G `  w ) T ( F `  w ) )  e. 
_V
2322a1i 10 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( G `  w
) T ( F `
 w ) )  e.  _V )
24 ovex 5883 . . . 4  |-  ( ( H `  w ) T ( F `  w ) )  e. 
_V
2524a1i 10 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( H `  w
) T ( F `
 w ) )  e.  _V )
2614, 5, 11, 17, 20offval2 6095 . . 3  |-  ( ph  ->  ( G  o F T F )  =  ( w  e.  A  |->  ( ( G `  w ) T ( F `  w ) ) ) )
2714, 8, 11, 18, 20offval2 6095 . . 3  |-  ( ph  ->  ( H  o F T F )  =  ( w  e.  A  |->  ( ( H `  w ) T ( F `  w ) ) ) )
2814, 23, 25, 26, 27offval2 6095 . 2  |-  ( ph  ->  ( ( G  o F T F )  o F O ( H  o F T F ) )  =  ( w  e.  A  |->  ( ( ( G `  w ) T ( F `  w ) ) O ( ( H `  w ) T ( F `  w ) ) ) ) )
2913, 21, 283eqtr4d 2325 1  |-  ( ph  ->  ( ( G  o F R H )  o F T F )  =  ( ( G  o F T F )  o F O ( H  o F T F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076
This theorem is referenced by:  psrlmod  16146  mendlmod  27501  expgrowth  27552  lflvsdi1  29268
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078
  Copyright terms: Public domain W3C validator