MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofid1 Unicode version

Theorem caofid1 6194
Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypotheses
Ref Expression
caofref.1  |-  ( ph  ->  A  e.  V )
caofref.2  |-  ( ph  ->  F : A --> S )
caofid0.3  |-  ( ph  ->  B  e.  W )
caofid1.4  |-  ( ph  ->  C  e.  X )
caofid1.5  |-  ( (
ph  /\  x  e.  S )  ->  (
x R B )  =  C )
Assertion
Ref Expression
caofid1  |-  ( ph  ->  ( F  o F R ( A  X.  { B } ) )  =  ( A  X.  { C } ) )
Distinct variable groups:    x, B    x, C    x, F    ph, x    x, R    x, S
Allowed substitution hints:    A( x)    V( x)    W( x)    X( x)

Proof of Theorem caofid1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 caofref.1 . 2  |-  ( ph  ->  A  e.  V )
2 caofref.2 . . 3  |-  ( ph  ->  F : A --> S )
3 ffn 5472 . . 3  |-  ( F : A --> S  ->  F  Fn  A )
42, 3syl 15 . 2  |-  ( ph  ->  F  Fn  A )
5 caofid0.3 . . 3  |-  ( ph  ->  B  e.  W )
6 fnconstg 5512 . . 3  |-  ( B  e.  W  ->  ( A  X.  { B }
)  Fn  A )
75, 6syl 15 . 2  |-  ( ph  ->  ( A  X.  { B } )  Fn  A
)
8 caofid1.4 . . 3  |-  ( ph  ->  C  e.  X )
9 fnconstg 5512 . . 3  |-  ( C  e.  X  ->  ( A  X.  { C }
)  Fn  A )
108, 9syl 15 . 2  |-  ( ph  ->  ( A  X.  { C } )  Fn  A
)
11 eqidd 2359 . 2  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  =  ( F `  w ) )
12 fvconst2g 5811 . . 3  |-  ( ( B  e.  W  /\  w  e.  A )  ->  ( ( A  X.  { B } ) `  w )  =  B )
135, 12sylan 457 . 2  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { B } ) `  w
)  =  B )
14 ffvelrn 5746 . . . . 5  |-  ( ( F : A --> S  /\  w  e.  A )  ->  ( F `  w
)  e.  S )
152, 14sylan 457 . . . 4  |-  ( (
ph  /\  w  e.  A )  ->  ( F `  w )  e.  S )
16 caofid1.5 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  (
x R B )  =  C )
1716ralrimiva 2702 . . . . 5  |-  ( ph  ->  A. x  e.  S  ( x R B )  =  C )
18 oveq1 5952 . . . . . . 7  |-  ( x  =  ( F `  w )  ->  (
x R B )  =  ( ( F `
 w ) R B ) )
1918eqeq1d 2366 . . . . . 6  |-  ( x  =  ( F `  w )  ->  (
( x R B )  =  C  <->  ( ( F `  w ) R B )  =  C ) )
2019rspccva 2959 . . . . 5  |-  ( ( A. x  e.  S  ( x R B )  =  C  /\  ( F `  w )  e.  S )  -> 
( ( F `  w ) R B )  =  C )
2117, 20sylan 457 . . . 4  |-  ( (
ph  /\  ( F `  w )  e.  S
)  ->  ( ( F `  w ) R B )  =  C )
2215, 21syldan 456 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R B )  =  C )
23 fvconst2g 5811 . . . 4  |-  ( ( C  e.  X  /\  w  e.  A )  ->  ( ( A  X.  { C } ) `  w )  =  C )
248, 23sylan 457 . . 3  |-  ( (
ph  /\  w  e.  A )  ->  (
( A  X.  { C } ) `  w
)  =  C )
2522, 24eqtr4d 2393 . 2  |-  ( (
ph  /\  w  e.  A )  ->  (
( F `  w
) R B )  =  ( ( A  X.  { C }
) `  w )
)
261, 4, 7, 10, 11, 13, 25offveq 6185 1  |-  ( ph  ->  ( F  o F R ( A  X.  { B } ) )  =  ( A  X.  { C } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   {csn 3716    X. cxp 4769    Fn wfn 5332   -->wf 5333   ` cfv 5337  (class class class)co 5945    o Fcof 6163
This theorem is referenced by:  plymul0or  19765  fta1lem  19791  lfl0sc  29341
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165
  Copyright terms: Public domain W3C validator