MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov12 Unicode version

Theorem caov12 6048
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov12  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov12
StepHypRef Expression
1 caov.1 . . . 4  |-  A  e. 
_V
2 caov.2 . . . 4  |-  B  e. 
_V
3 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
41, 2, 3caovcom 6017 . . 3  |-  ( A F B )  =  ( B F A )
54oveq1i 5868 . 2  |-  ( ( A F B ) F C )  =  ( ( B F A ) F C )
6 caov.3 . . 3  |-  C  e. 
_V
7 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
81, 2, 6, 7caovass 6020 . 2  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
92, 1, 6, 7caovass 6020 . 2  |-  ( ( B F A ) F C )  =  ( B F ( A F C ) )
105, 8, 93eqtr3i 2311 1  |-  ( A F ( B F C ) )  =  ( B F ( A F C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788  (class class class)co 5858
This theorem is referenced by:  caov31  6049  caov4  6051  caovmo  6057  distrnq  8585  ltaddnq  8598  ltexnq  8599  1idpr  8653  prlem934  8657  prlem936  8671  mulcmpblnrlem  8695  ltsosr  8716  0idsr  8719  1idsr  8720  recexsrlem  8725  mulgt0sr  8727  axmulass  8779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator