MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov31d Unicode version

Theorem caov31d 6126
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovd.1  |-  ( ph  ->  A  e.  S )
caovd.2  |-  ( ph  ->  B  e.  S )
caovd.3  |-  ( ph  ->  C  e.  S )
caovd.com  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
caovd.ass  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
Assertion
Ref Expression
caov31d  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( C F B ) F A ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, S, y, z

Proof of Theorem caov31d
StepHypRef Expression
1 caovd.com . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
2 caovd.1 . . . 4  |-  ( ph  ->  A  e.  S )
3 caovd.3 . . . 4  |-  ( ph  ->  C  e.  S )
41, 2, 3caovcomd 6100 . . 3  |-  ( ph  ->  ( A F C )  =  ( C F A ) )
54oveq1d 5957 . 2  |-  ( ph  ->  ( ( A F C ) F B )  =  ( ( C F A ) F B ) )
6 caovd.2 . . 3  |-  ( ph  ->  B  e.  S )
7 caovd.ass . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
82, 6, 3, 1, 7caov32d 6124 . 2  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( A F C ) F B ) )
93, 6, 2, 1, 7caov32d 6124 . 2  |-  ( ph  ->  ( ( C F B ) F A )  =  ( ( C F A ) F B ) )
105, 8, 93eqtr4d 2400 1  |-  ( ph  ->  ( ( A F B ) F C )  =  ( ( C F B ) F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710  (class class class)co 5942
This theorem is referenced by:  caov13d  6127
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-iota 5298  df-fv 5342  df-ov 5945
  Copyright terms: Public domain W3C validator