MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caov42 Unicode version

Theorem caov42 6053
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
caov.4  |-  D  e. 
_V
Assertion
Ref Expression
caov42  |-  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( D F B ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, D, y, z    x, F, y, z

Proof of Theorem caov42
StepHypRef Expression
1 caov.1 . . 3  |-  A  e. 
_V
2 caov.2 . . 3  |-  B  e. 
_V
3 caov.3 . . 3  |-  C  e. 
_V
4 caov.com . . 3  |-  ( x F y )  =  ( y F x )
5 caov.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
6 caov.4 . . 3  |-  D  e. 
_V
71, 2, 3, 4, 5, 6caov4 6051 . 2  |-  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( B F D ) )
82, 6, 4caovcom 6017 . . 3  |-  ( B F D )  =  ( D F B )
98oveq2i 5869 . 2  |-  ( ( A F C ) F ( B F D ) )  =  ( ( A F C ) F ( D F B ) )
107, 9eqtri 2303 1  |-  ( ( A F B ) F ( C F D ) )  =  ( ( A F C ) F ( D F B ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788  (class class class)co 5858
This theorem is referenced by:  caovlem2  6056  mulcmpblnrlem  8695  ltasr  8722  axmulass  8779
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator