Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovass Structured version   Unicode version

Theorem caovass 6249
 Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
caovass.1
caovass.2
caovass.3
caovass.4
Assertion
Ref Expression
caovass
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovass
StepHypRef Expression
1 caovass.1 . 2
2 caovass.2 . 2
3 caovass.3 . 2
4 tru 1331 . . 3
5 caovass.4 . . . . 5
65a1i 11 . . . 4
76caovassg 6247 . . 3
84, 7mpan 653 . 2
91, 2, 3, 8mp3an 1280 1
 Colors of variables: wff set class Syntax hints:   wa 360   w3a 937   wtru 1326   wceq 1653   wcel 1726  cvv 2958  (class class class)co 6083 This theorem is referenced by:  caov32  6276  caov12  6277  caov31  6278  caov13  6279  caov4  6280  caov411  6281  caovdilem  6284  caovmo  6286 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-ov 6086
 Copyright terms: Public domain W3C validator