MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovass Unicode version

Theorem caovass 6062
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 26-May-2014.)
Hypotheses
Ref Expression
caovass.1  |-  A  e. 
_V
caovass.2  |-  B  e. 
_V
caovass.3  |-  C  e. 
_V
caovass.4  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caovass  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caovass
StepHypRef Expression
1 caovass.1 . 2  |-  A  e. 
_V
2 caovass.2 . 2  |-  B  e. 
_V
3 caovass.3 . 2  |-  C  e. 
_V
4 tru 1312 . . 3  |-  T.
5 caovass.4 . . . . 5  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
65a1i 10 . . . 4  |-  ( (  T.  /\  ( x  e.  _V  /\  y  e.  _V  /\  z  e. 
_V ) )  -> 
( ( x F y ) F z )  =  ( x F ( y F z ) ) )
76caovassg 6060 . . 3  |-  ( (  T.  /\  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V ) )  -> 
( ( A F B ) F C )  =  ( A F ( B F C ) ) )
84, 7mpan 651 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  (
( A F B ) F C )  =  ( A F ( B F C ) ) )
91, 2, 3, 8mp3an 1277 1  |-  ( ( A F B ) F C )  =  ( A F ( B F C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    /\ w3a 934    T. wtru 1307    = wceq 1633    e. wcel 1701   _Vcvv 2822  (class class class)co 5900
This theorem is referenced by:  caov32  6089  caov12  6090  caov31  6091  caov13  6092  caov4  6093  caov411  6094  caovdilem  6097  caovmo  6099
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-br 4061  df-iota 5256  df-fv 5300  df-ov 5903
  Copyright terms: Public domain W3C validator