Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovassd Structured version   Unicode version

Theorem caovassd 6275
 Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovassg.1
caovassd.2
caovassd.3
caovassd.4
Assertion
Ref Expression
caovassd
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovassd
StepHypRef Expression
1 id 21 . 2
2 caovassd.2 . 2
3 caovassd.3 . 2
4 caovassd.4 . 2
5 caovassg.1 . . 3
65caovassg 6274 . 2
71, 2, 3, 4, 6syl13anc 1187 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   w3a 937   wceq 1653   wcel 1727  (class class class)co 6110 This theorem is referenced by:  caov32d  6296  caov12d  6297  caov13d  6299  caov4d  6300  grprinvlem  6314  grprinvd  6315  grpridd  6316  seqf1olem2a  11392  grprcan  14869 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-iota 5447  df-fv 5491  df-ov 6113
 Copyright terms: Public domain W3C validator