Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovclg Structured version   Unicode version

Theorem caovclg 6239
 Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1
Assertion
Ref Expression
caovclg
Distinct variable groups:   ,,   ,   ,,   ,,   ,,   ,,   ,,
Allowed substitution hint:   ()

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3
21ralrimivva 2798 . 2
3 oveq1 6088 . . . 4
43eleq1d 2502 . . 3
5 oveq2 6089 . . . 4
65eleq1d 2502 . . 3
74, 6rspc2v 3058 . 2
82, 7mpan9 456 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   wceq 1652   wcel 1725  wral 2705  (class class class)co 6081 This theorem is referenced by:  caovcld  6240  caovcl  6241  grprinvd  6286  seqcl2  11341  seqcaopr  11360  ercpbl  13774  imasmnd2  14732  imasgrp2  14933  gsumzaddlem  15526  imasrng  15725  divsrhm  16308  mplind  16562  plymullem  20135  gsumpropd2lem  24220 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084
 Copyright terms: Public domain W3C validator