Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcom Structured version   Unicode version

Theorem caovcom 6244
 Description: Convert an operation commutative law to class notation. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 1-Jun-2013.)
Hypotheses
Ref Expression
caovcom.1
caovcom.2
caovcom.3
Assertion
Ref Expression
caovcom
Distinct variable groups:   ,,   ,,   ,,

Proof of Theorem caovcom
StepHypRef Expression
1 caovcom.1 . 2
2 caovcom.2 . . 3
31, 2pm3.2i 442 . 2
4 caovcom.3 . . . 4
54a1i 11 . . 3
65caovcomg 6242 . 2
71, 3, 6mp2an 654 1
 Colors of variables: wff set class Syntax hints:   wa 359   wceq 1652   wcel 1725  cvv 2956  (class class class)co 6081 This theorem is referenced by:  caovord2  6259  caov32  6274  caov12  6275  caov42  6280  caovdir  6281  caovmo  6284  ecopovsym  7006  ecopover  7008  genpcl  8885 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084
 Copyright terms: Public domain W3C validator