MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovcomg Unicode version

Theorem caovcomg 6031
Description: Convert an operation commutative law to class notation. (Contributed by Mario Carneiro, 1-Jun-2013.)
Hypothesis
Ref Expression
caovcomg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
Assertion
Ref Expression
caovcomg  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  =  ( B F A ) )
Distinct variable groups:    x, y, A    x, B, y    ph, x, y    x, F, y    x, S, y

Proof of Theorem caovcomg
StepHypRef Expression
1 caovcomg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  =  ( y F x ) )
21ralrimivva 2648 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x F y )  =  ( y F x ) )
3 oveq1 5881 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
4 oveq2 5882 . . . 4  |-  ( x  =  A  ->  (
y F x )  =  ( y F A ) )
53, 4eqeq12d 2310 . . 3  |-  ( x  =  A  ->  (
( x F y )  =  ( y F x )  <->  ( A F y )  =  ( y F A ) ) )
6 oveq2 5882 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
7 oveq1 5881 . . . 4  |-  ( y  =  B  ->  (
y F A )  =  ( B F A ) )
86, 7eqeq12d 2310 . . 3  |-  ( y  =  B  ->  (
( A F y )  =  ( y F A )  <->  ( A F B )  =  ( B F A ) ) )
95, 8rspc2v 2903 . 2  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x F y )  =  ( y F x )  ->  ( A F B )  =  ( B F A ) ) )
102, 9mpan9 455 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S ) )  -> 
( A F B )  =  ( B F A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556  (class class class)co 5874
This theorem is referenced by:  caovcomd  6032  caovcom  6033  caofcom  6125  seqcaopr  11099  cmncom  15121
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator