MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdig Unicode version

Theorem caovdig 6034
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
caovdig.1  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
Assertion
Ref Expression
caovdig  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdig
StepHypRef Expression
1 caovdig.1 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  S  /\  z  e.  S ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
21ralrimivvva 2636 . 2  |-  ( ph  ->  A. x  e.  K  A. y  e.  S  A. z  e.  S  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) ) )
3 oveq1 5865 . . . 4  |-  ( x  =  A  ->  (
x G ( y F z ) )  =  ( A G ( y F z ) ) )
4 oveq1 5865 . . . . 5  |-  ( x  =  A  ->  (
x G y )  =  ( A G y ) )
5 oveq1 5865 . . . . 5  |-  ( x  =  A  ->  (
x G z )  =  ( A G z ) )
64, 5oveq12d 5876 . . . 4  |-  ( x  =  A  ->  (
( x G y ) H ( x G z ) )  =  ( ( A G y ) H ( A G z ) ) )
73, 6eqeq12d 2297 . . 3  |-  ( x  =  A  ->  (
( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) )  <->  ( A G ( y F z ) )  =  ( ( A G y ) H ( A G z ) ) ) )
8 oveq1 5865 . . . . 5  |-  ( y  =  B  ->  (
y F z )  =  ( B F z ) )
98oveq2d 5874 . . . 4  |-  ( y  =  B  ->  ( A G ( y F z ) )  =  ( A G ( B F z ) ) )
10 oveq2 5866 . . . . 5  |-  ( y  =  B  ->  ( A G y )  =  ( A G B ) )
1110oveq1d 5873 . . . 4  |-  ( y  =  B  ->  (
( A G y ) H ( A G z ) )  =  ( ( A G B ) H ( A G z ) ) )
129, 11eqeq12d 2297 . . 3  |-  ( y  =  B  ->  (
( A G ( y F z ) )  =  ( ( A G y ) H ( A G z ) )  <->  ( A G ( B F z ) )  =  ( ( A G B ) H ( A G z ) ) ) )
13 oveq2 5866 . . . . 5  |-  ( z  =  C  ->  ( B F z )  =  ( B F C ) )
1413oveq2d 5874 . . . 4  |-  ( z  =  C  ->  ( A G ( B F z ) )  =  ( A G ( B F C ) ) )
15 oveq2 5866 . . . . 5  |-  ( z  =  C  ->  ( A G z )  =  ( A G C ) )
1615oveq2d 5874 . . . 4  |-  ( z  =  C  ->  (
( A G B ) H ( A G z ) )  =  ( ( A G B ) H ( A G C ) ) )
1714, 16eqeq12d 2297 . . 3  |-  ( z  =  C  ->  (
( A G ( B F z ) )  =  ( ( A G B ) H ( A G z ) )  <->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) ) )
187, 12, 17rspc3v 2893 . 2  |-  ( ( A  e.  K  /\  B  e.  S  /\  C  e.  S )  ->  ( A. x  e.  K  A. y  e.  S  A. z  e.  S  ( x G ( y F z ) )  =  ( ( x G y ) H ( x G z ) )  ->  ( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) ) )
192, 18mpan9 455 1  |-  ( (
ph  /\  ( A  e.  K  /\  B  e.  S  /\  C  e.  S ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) H ( A G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543  (class class class)co 5858
This theorem is referenced by:  caovdid  6035  caovdi  6039  rngi  15353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator