MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir Structured version   Unicode version

Theorem caovdir 6273
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1  |-  A  e. 
_V
caovdir.2  |-  B  e. 
_V
caovdir.3  |-  C  e. 
_V
caovdir.com  |-  ( x G y )  =  ( y G x )
caovdir.distr  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
Assertion
Ref Expression
caovdir  |-  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, G, y, z

Proof of Theorem caovdir
StepHypRef Expression
1 caovdir.3 . . 3  |-  C  e. 
_V
2 caovdir.1 . . 3  |-  A  e. 
_V
3 caovdir.2 . . 3  |-  B  e. 
_V
4 caovdir.distr . . 3  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
51, 2, 3, 4caovdi 6258 . 2  |-  ( C G ( A F B ) )  =  ( ( C G A ) F ( C G B ) )
6 ovex 6098 . . 3  |-  ( A F B )  e. 
_V
7 caovdir.com . . 3  |-  ( x G y )  =  ( y G x )
81, 6, 7caovcom 6236 . 2  |-  ( C G ( A F B ) )  =  ( ( A F B ) G C )
91, 2, 7caovcom 6236 . . 3  |-  ( C G A )  =  ( A G C )
101, 3, 7caovcom 6236 . . 3  |-  ( C G B )  =  ( B G C )
119, 10oveq12i 6085 . 2  |-  ( ( C G A ) F ( C G B ) )  =  ( ( A G C ) F ( B G C ) )
125, 8, 113eqtr3i 2463 1  |-  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   _Vcvv 2948  (class class class)co 6073
This theorem is referenced by:  caovdilem  6274  adderpqlem  8823  addassnq  8827  prlem934  8902  prlem936  8916  recexsrlem  8970  mulgt0sr  8972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-nul 4330
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076
  Copyright terms: Public domain W3C validator