MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir Unicode version

Theorem caovdir 6221
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1  |-  A  e. 
_V
caovdir.2  |-  B  e. 
_V
caovdir.3  |-  C  e. 
_V
caovdir.com  |-  ( x G y )  =  ( y G x )
caovdir.distr  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
Assertion
Ref Expression
caovdir  |-  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, G, y, z

Proof of Theorem caovdir
StepHypRef Expression
1 caovdir.3 . . 3  |-  C  e. 
_V
2 caovdir.1 . . 3  |-  A  e. 
_V
3 caovdir.2 . . 3  |-  B  e. 
_V
4 caovdir.distr . . 3  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
51, 2, 3, 4caovdi 6206 . 2  |-  ( C G ( A F B ) )  =  ( ( C G A ) F ( C G B ) )
6 ovex 6046 . . 3  |-  ( A F B )  e. 
_V
7 caovdir.com . . 3  |-  ( x G y )  =  ( y G x )
81, 6, 7caovcom 6184 . 2  |-  ( C G ( A F B ) )  =  ( ( A F B ) G C )
91, 2, 7caovcom 6184 . . 3  |-  ( C G A )  =  ( A G C )
101, 3, 7caovcom 6184 . . 3  |-  ( C G B )  =  ( B G C )
119, 10oveq12i 6033 . 2  |-  ( ( C G A ) F ( C G B ) )  =  ( ( A G C ) F ( B G C ) )
125, 8, 113eqtr3i 2416 1  |-  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1717   _Vcvv 2900  (class class class)co 6021
This theorem is referenced by:  caovdilem  6222  adderpqlem  8765  addassnq  8769  prlem934  8844  prlem936  8858  recexsrlem  8912  mulgt0sr  8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-nul 4280
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-iota 5359  df-fv 5403  df-ov 6024
  Copyright terms: Public domain W3C validator