MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir Unicode version

Theorem caovdir 6070
Description: Reverse distributive law. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1  |-  A  e. 
_V
caovdir.2  |-  B  e. 
_V
caovdir.3  |-  C  e. 
_V
caovdir.com  |-  ( x G y )  =  ( y G x )
caovdir.distr  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
Assertion
Ref Expression
caovdir  |-  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, G, y, z

Proof of Theorem caovdir
StepHypRef Expression
1 caovdir.3 . . 3  |-  C  e. 
_V
2 caovdir.1 . . 3  |-  A  e. 
_V
3 caovdir.2 . . 3  |-  B  e. 
_V
4 caovdir.distr . . 3  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
51, 2, 3, 4caovdi 6055 . 2  |-  ( C G ( A F B ) )  =  ( ( C G A ) F ( C G B ) )
6 ovex 5899 . . 3  |-  ( A F B )  e. 
_V
7 caovdir.com . . 3  |-  ( x G y )  =  ( y G x )
81, 6, 7caovcom 6033 . 2  |-  ( C G ( A F B ) )  =  ( ( A F B ) G C )
91, 2, 7caovcom 6033 . . 3  |-  ( C G A )  =  ( A G C )
101, 3, 7caovcom 6033 . . 3  |-  ( C G B )  =  ( B G C )
119, 10oveq12i 5886 . 2  |-  ( ( C G A ) F ( C G B ) )  =  ( ( A G C ) F ( B G C ) )
125, 8, 113eqtr3i 2324 1  |-  ( ( A F B ) G C )  =  ( ( A G C ) F ( B G C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   _Vcvv 2801  (class class class)co 5874
This theorem is referenced by:  caovdilem  6071  adderpqlem  8594  addassnq  8598  prlem934  8673  prlem936  8687  recexsrlem  8741  mulgt0sr  8743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator