Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir2d Structured version   Unicode version

Theorem caovdir2d 6255
 Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdir2d.1
caovdir2d.2
caovdir2d.3
caovdir2d.4
caovdir2d.cl
caovdir2d.com
Assertion
Ref Expression
caovdir2d
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovdir2d
StepHypRef Expression
1 caovdir2d.1 . . 3
2 caovdir2d.4 . . 3
3 caovdir2d.2 . . 3
4 caovdir2d.3 . . 3
51, 2, 3, 4caovdid 6254 . 2
6 caovdir2d.com . . 3
7 caovdir2d.cl . . . 4
87, 3, 4caovcld 6232 . . 3
96, 8, 2caovcomd 6235 . 2
106, 3, 2caovcomd 6235 . . 3
116, 4, 2caovcomd 6235 . . 3
1210, 11oveq12d 6091 . 2
135, 9, 123eqtr4d 2477 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936   wceq 1652   wcel 1725  (class class class)co 6073 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076
 Copyright terms: Public domain W3C validator