MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdird Unicode version

Theorem caovdird 6204
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdirg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K ) )  -> 
( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )
caovdird.2  |-  ( ph  ->  A  e.  S )
caovdird.3  |-  ( ph  ->  B  e.  S )
caovdird.4  |-  ( ph  ->  C  e.  K )
Assertion
Ref Expression
caovdird  |-  ( ph  ->  ( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdird
StepHypRef Expression
1 id 20 . 2  |-  ( ph  ->  ph )
2 caovdird.2 . 2  |-  ( ph  ->  A  e.  S )
3 caovdird.3 . 2  |-  ( ph  ->  B  e.  S )
4 caovdird.4 . 2  |-  ( ph  ->  C  e.  K )
5 caovdirg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K ) )  -> 
( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )
65caovdirg 6203 . 2  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  K ) )  -> 
( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
71, 2, 3, 4, 6syl13anc 1186 1  |-  ( ph  ->  ( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717  (class class class)co 6020
This theorem is referenced by:  caofdir  6280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ral 2654  df-rex 2655  df-rab 2658  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-iota 5358  df-fv 5402  df-ov 6023
  Copyright terms: Public domain W3C validator