MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovlem2 Unicode version

Theorem caovlem2 6056
Description: Lemma used in real number construction. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caovdir.1  |-  A  e. 
_V
caovdir.2  |-  B  e. 
_V
caovdir.3  |-  C  e. 
_V
caovdir.com  |-  ( x G y )  =  ( y G x )
caovdir.distr  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
caovdl.4  |-  D  e. 
_V
caovdl.5  |-  H  e. 
_V
caovdl.ass  |-  ( ( x G y ) G z )  =  ( x G ( y G z ) )
caovdl2.6  |-  R  e. 
_V
caovdl2.com  |-  ( x F y )  =  ( y F x )
caovdl2.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caovlem2  |-  ( ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) )  =  ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, C, y, z    x, D, y, z    x, F, y, z    x, G, y, z    x, H, y, z    x, R, y, z

Proof of Theorem caovlem2
StepHypRef Expression
1 ovex 5883 . . 3  |-  ( A G ( C G H ) )  e. 
_V
2 ovex 5883 . . 3  |-  ( B G ( D G H ) )  e. 
_V
3 ovex 5883 . . 3  |-  ( A G ( D G R ) )  e. 
_V
4 caovdl2.com . . 3  |-  ( x F y )  =  ( y F x )
5 caovdl2.ass . . 3  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
6 ovex 5883 . . 3  |-  ( B G ( C G R ) )  e. 
_V
71, 2, 3, 4, 5, 6caov42 6053 . 2  |-  ( ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) F ( ( A G ( D G R ) ) F ( B G ( C G R ) ) ) )  =  ( ( ( A G ( C G H ) ) F ( A G ( D G R ) ) ) F ( ( B G ( C G R ) ) F ( B G ( D G H ) ) ) )
8 caovdir.1 . . . 4  |-  A  e. 
_V
9 caovdir.2 . . . 4  |-  B  e. 
_V
10 caovdir.3 . . . 4  |-  C  e. 
_V
11 caovdir.com . . . 4  |-  ( x G y )  =  ( y G x )
12 caovdir.distr . . . 4  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
13 caovdl.4 . . . 4  |-  D  e. 
_V
14 caovdl.5 . . . 4  |-  H  e. 
_V
15 caovdl.ass . . . 4  |-  ( ( x G y ) G z )  =  ( x G ( y G z ) )
168, 9, 10, 11, 12, 13, 14, 15caovdilem 6055 . . 3  |-  ( ( ( A G C ) F ( B G D ) ) G H )  =  ( ( A G ( C G H ) ) F ( B G ( D G H ) ) )
17 caovdl2.6 . . . 4  |-  R  e. 
_V
188, 9, 13, 11, 12, 10, 17, 15caovdilem 6055 . . 3  |-  ( ( ( A G D ) F ( B G C ) ) G R )  =  ( ( A G ( D G R ) ) F ( B G ( C G R ) ) )
1916, 18oveq12i 5870 . 2  |-  ( ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) )  =  ( ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) F ( ( A G ( D G R ) ) F ( B G ( C G R ) ) ) )
20 ovex 5883 . . . 4  |-  ( C G H )  e. 
_V
21 ovex 5883 . . . 4  |-  ( D G R )  e. 
_V
228, 20, 21, 12caovdi 6039 . . 3  |-  ( A G ( ( C G H ) F ( D G R ) ) )  =  ( ( A G ( C G H ) ) F ( A G ( D G R ) ) )
23 ovex 5883 . . . 4  |-  ( C G R )  e. 
_V
24 ovex 5883 . . . 4  |-  ( D G H )  e. 
_V
259, 23, 24, 12caovdi 6039 . . 3  |-  ( B G ( ( C G R ) F ( D G H ) ) )  =  ( ( B G ( C G R ) ) F ( B G ( D G H ) ) )
2622, 25oveq12i 5870 . 2  |-  ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) )  =  ( ( ( A G ( C G H ) ) F ( A G ( D G R ) ) ) F ( ( B G ( C G R ) ) F ( B G ( D G H ) ) ) )
277, 19, 263eqtr4i 2313 1  |-  ( ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) )  =  ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   _Vcvv 2788  (class class class)co 5858
This theorem is referenced by:  mulasssr  8712
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator