Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovordd Structured version   Unicode version

Theorem caovordd 6256
 Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovordg.1
caovordd.2
caovordd.3
caovordd.4
Assertion
Ref Expression
caovordd
Distinct variable groups:   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,   ,,,

Proof of Theorem caovordd
StepHypRef Expression
1 id 21 . 2
2 caovordd.2 . 2
3 caovordd.3 . 2
4 caovordd.4 . 2
5 caovordg.1 . . 3
65caovordg 6255 . 2
71, 2, 3, 4, 6syl13anc 1187 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   w3a 937   wcel 1726   class class class wbr 4213  (class class class)co 6082 This theorem is referenced by:  caovord2d  6257  caovord3d  6258 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-iota 5419  df-fv 5463  df-ov 6085
 Copyright terms: Public domain W3C validator