MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardcf Unicode version

Theorem cardcf 7878
Description: Cofinality is a cardinal number. Proposition 11.11 of [TakeutiZaring] p. 103. (Contributed by NM, 24-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
cardcf  |-  ( card `  ( cf `  A
) )  =  ( cf `  A )

Proof of Theorem cardcf
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 7873 . . . 4  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
2 vex 2791 . . . . . . . . 9  |-  v  e. 
_V
3 eqeq1 2289 . . . . . . . . . . 11  |-  ( x  =  v  ->  (
x  =  ( card `  y )  <->  v  =  ( card `  y )
) )
43anbi1d 685 . . . . . . . . . 10  |-  ( x  =  v  ->  (
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)  <->  ( v  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) ) )
54exbidv 1612 . . . . . . . . 9  |-  ( x  =  v  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  E. y
( v  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) ) )
62, 5elab 2914 . . . . . . . 8  |-  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  <->  E. y ( v  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
7 fveq2 5525 . . . . . . . . . . . 12  |-  ( v  =  ( card `  y
)  ->  ( card `  v )  =  (
card `  ( card `  y ) ) )
8 cardidm 7592 . . . . . . . . . . . 12  |-  ( card `  ( card `  y
) )  =  (
card `  y )
97, 8syl6eq 2331 . . . . . . . . . . 11  |-  ( v  =  ( card `  y
)  ->  ( card `  v )  =  (
card `  y )
)
10 eqeq2 2292 . . . . . . . . . . 11  |-  ( v  =  ( card `  y
)  ->  ( ( card `  v )  =  v  <->  ( card `  v
)  =  ( card `  y ) ) )
119, 10mpbird 223 . . . . . . . . . 10  |-  ( v  =  ( card `  y
)  ->  ( card `  v )  =  v )
1211adantr 451 . . . . . . . . 9  |-  ( ( v  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  -> 
( card `  v )  =  v )
1312exlimiv 1666 . . . . . . . 8  |-  ( E. y ( v  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  -> 
( card `  v )  =  v )
146, 13sylbi 187 . . . . . . 7  |-  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  ( card `  v
)  =  v )
15 cardon 7577 . . . . . . 7  |-  ( card `  v )  e.  On
1614, 15syl6eqelr 2372 . . . . . 6  |-  ( v  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  v  e.  On )
1716ssriv 3184 . . . . 5  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  On
18 fvex 5539 . . . . . . 7  |-  ( cf `  A )  e.  _V
191, 18syl6eqelr 2372 . . . . . 6  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )
20 intex 4167 . . . . . 6  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) }  =/=  (/)  <->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  _V )
2119, 20sylibr 203 . . . . 5  |-  ( A  e.  On  ->  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  =/=  (/) )
22 onint 4586 . . . . 5  |-  ( ( { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  On  /\  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  =/=  (/) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
2317, 21, 22sylancr 644 . . . 4  |-  ( A  e.  On  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
241, 23eqeltrd 2357 . . 3  |-  ( A  e.  On  ->  ( cf `  A )  e. 
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
25 fveq2 5525 . . . . 5  |-  ( v  =  ( cf `  A
)  ->  ( card `  v )  =  (
card `  ( cf `  A ) ) )
26 id 19 . . . . 5  |-  ( v  =  ( cf `  A
)  ->  v  =  ( cf `  A ) )
2725, 26eqeq12d 2297 . . . 4  |-  ( v  =  ( cf `  A
)  ->  ( ( card `  v )  =  v  <->  ( card `  ( cf `  A ) )  =  ( cf `  A
) ) )
2827, 14vtoclga 2849 . . 3  |-  ( ( cf `  A )  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) }  ->  ( card `  ( cf `  A ) )  =  ( cf `  A
) )
2924, 28syl 15 . 2  |-  ( A  e.  On  ->  ( card `  ( cf `  A
) )  =  ( cf `  A ) )
30 cff 7874 . . . . . 6  |-  cf : On
--> On
3130fdmi 5394 . . . . 5  |-  dom  cf  =  On
3231eleq2i 2347 . . . 4  |-  ( A  e.  dom  cf  <->  A  e.  On )
33 ndmfv 5552 . . . 4  |-  ( -.  A  e.  dom  cf  ->  ( cf `  A
)  =  (/) )
3432, 33sylnbir 298 . . 3  |-  ( -.  A  e.  On  ->  ( cf `  A )  =  (/) )
35 card0 7591 . . . 4  |-  ( card `  (/) )  =  (/)
36 fveq2 5525 . . . 4  |-  ( ( cf `  A )  =  (/)  ->  ( card `  ( cf `  A
) )  =  (
card `  (/) ) )
37 id 19 . . . 4  |-  ( ( cf `  A )  =  (/)  ->  ( cf `  A )  =  (/) )
3835, 36, 373eqtr4a 2341 . . 3  |-  ( ( cf `  A )  =  (/)  ->  ( card `  ( cf `  A
) )  =  ( cf `  A ) )
3934, 38syl 15 . 2  |-  ( -.  A  e.  On  ->  (
card `  ( cf `  A ) )  =  ( cf `  A
) )
4029, 39pm2.61i 156 1  |-  ( card `  ( cf `  A
) )  =  ( cf `  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   (/)c0 3455   |^|cint 3862   Oncon0 4392   dom cdm 4689   ` cfv 5255   cardccrd 7568   cfccf 7570
This theorem is referenced by:  cfon  7881  winacard  8314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-card 7572  df-cf 7574
  Copyright terms: Public domain W3C validator