Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddom2 Structured version   Unicode version

Theorem carddom2 7856
 Description: Two numerable sets have the dominance relationship iff their cardinalities have the subset relationship. See also carddom 8421, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddom2

Proof of Theorem carddom2
StepHypRef Expression
1 carddomi2 7849 . 2
2 brdom2 7129 . . 3
3 cardon 7823 . . . . . . . 8
43onelssi 4682 . . . . . . 7
5 carddomi2 7849 . . . . . . . 8
65ancoms 440 . . . . . . 7
7 domnsym 7225 . . . . . . 7
84, 6, 7syl56 32 . . . . . 6
98con2d 109 . . . . 5
10 cardon 7823 . . . . . 6
11 ontri1 4607 . . . . . 6
123, 10, 11mp2an 654 . . . . 5
139, 12syl6ibr 219 . . . 4
14 carden2b 7846 . . . . . 6
15 eqimss 3392 . . . . . 6
1614, 15syl 16 . . . . 5
1716a1i 11 . . . 4
1813, 17jaod 370 . . 3
192, 18syl5bi 209 . 2
201, 19impbid 184 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wo 358   wa 359   wceq 1652   wcel 1725   wss 3312   class class class wbr 4204  con0 4573   cdm 4870  cfv 5446   cen 7098   cdom 7099   csdm 7100  ccrd 7814 This theorem is referenced by:  carduni  7860  carden2  7866  cardsdom2  7867  domtri2  7868  infxpidm2  7890  cardaleph  7962  infenaleph  7964  alephinit  7968  ficardun2  8075  ackbij2  8115  cfflb  8131  fin1a2lem9  8280  carddom  8421  pwfseqlem5  8530  hashdom  11645 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-card 7818
 Copyright terms: Public domain W3C validator