MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carddomi2 Unicode version

Theorem carddomi2 7603
Description: Two sets have the dominance relationship if their cardinalities have the subset relationship and one is numerable. See also carddom 8176, which uses AC. (Contributed by Mario Carneiro, 11-Jan-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
carddomi2  |-  ( ( A  e.  dom  card  /\  B  e.  V )  ->  ( ( card `  A )  C_  ( card `  B )  ->  A  ~<_  B ) )

Proof of Theorem carddomi2
StepHypRef Expression
1 cardnueq0 7597 . . . . . 6  |-  ( A  e.  dom  card  ->  ( ( card `  A
)  =  (/)  <->  A  =  (/) ) )
21adantr 451 . . . . 5  |-  ( ( A  e.  dom  card  /\  B  e.  V )  ->  ( ( card `  A )  =  (/)  <->  A  =  (/) ) )
32biimpa 470 . . . 4  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( card `  A )  =  (/) )  ->  A  =  (/) )
4 0domg 6988 . . . . 5  |-  ( B  e.  V  ->  (/)  ~<_  B )
54ad2antlr 707 . . . 4  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( card `  A )  =  (/) )  ->  (/)  ~<_  B )
63, 5eqbrtrd 4043 . . 3  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( card `  A )  =  (/) )  ->  A  ~<_  B )
76a1d 22 . 2  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( card `  A )  =  (/) )  ->  ( ( card `  A )  C_  ( card `  B )  ->  A  ~<_  B ) )
8 fvex 5539 . . . . 5  |-  ( card `  B )  e.  _V
9 simprr 733 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( card `  A
)  C_  ( card `  B ) )
10 ssdomg 6907 . . . . 5  |-  ( (
card `  B )  e.  _V  ->  ( ( card `  A )  C_  ( card `  B )  ->  ( card `  A
)  ~<_  ( card `  B
) ) )
118, 9, 10mpsyl 59 . . . 4  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( card `  A
)  ~<_  ( card `  B
) )
12 cardid2 7586 . . . . . 6  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
1312ad2antrr 706 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( card `  A
)  ~~  A )
14 simprl 732 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( card `  A
)  =/=  (/) )
15 ssn0 3487 . . . . . . 7  |-  ( ( ( card `  A
)  C_  ( card `  B )  /\  ( card `  A )  =/=  (/) )  ->  ( card `  B )  =/=  (/) )
169, 14, 15syl2anc 642 . . . . . 6  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( card `  B
)  =/=  (/) )
17 ndmfv 5552 . . . . . . 7  |-  ( -.  B  e.  dom  card  -> 
( card `  B )  =  (/) )
1817necon1ai 2488 . . . . . 6  |-  ( (
card `  B )  =/=  (/)  ->  B  e.  dom  card )
19 cardid2 7586 . . . . . 6  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
2016, 18, 193syl 18 . . . . 5  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( card `  B
)  ~~  B )
21 domen1 7003 . . . . . 6  |-  ( (
card `  A )  ~~  A  ->  ( (
card `  A )  ~<_  ( card `  B )  <->  A  ~<_  ( card `  B
) ) )
22 domen2 7004 . . . . . 6  |-  ( (
card `  B )  ~~  B  ->  ( A  ~<_  ( card `  B
)  <->  A  ~<_  B )
)
2321, 22sylan9bb 680 . . . . 5  |-  ( ( ( card `  A
)  ~~  A  /\  ( card `  B )  ~~  B )  ->  (
( card `  A )  ~<_  ( card `  B )  <->  A  ~<_  B ) )
2413, 20, 23syl2anc 642 . . . 4  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  ( ( card `  A )  ~<_  ( card `  B )  <->  A  ~<_  B ) )
2511, 24mpbid 201 . . 3  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( ( card `  A )  =/=  (/)  /\  ( card `  A
)  C_  ( card `  B ) ) )  ->  A  ~<_  B )
2625expr 598 . 2  |-  ( ( ( A  e.  dom  card  /\  B  e.  V
)  /\  ( card `  A )  =/=  (/) )  -> 
( ( card `  A
)  C_  ( card `  B )  ->  A  ~<_  B ) )
277, 26pm2.61dane 2524 1  |-  ( ( A  e.  dom  card  /\  B  e.  V )  ->  ( ( card `  A )  C_  ( card `  B )  ->  A  ~<_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    C_ wss 3152   (/)c0 3455   class class class wbr 4023   dom cdm 4689   ` cfv 5255    ~~ cen 6860    ~<_ cdom 6861   cardccrd 7568
This theorem is referenced by:  carddom2  7610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-card 7572
  Copyright terms: Public domain W3C validator