MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  carden2b Structured version   Unicode version

Theorem carden2b 7859
Description: If two sets are equinumerous, then they have equal cardinalities. (This assertion and carden2a 7858 are meant to replace carden 8431 in ZF without AC.) (Contributed by Mario Carneiro, 9-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
carden2b  |-  ( A 
~~  B  ->  ( card `  A )  =  ( card `  B
) )

Proof of Theorem carden2b
StepHypRef Expression
1 cardne 7857 . . . . 5  |-  ( (
card `  B )  e.  ( card `  A
)  ->  -.  ( card `  B )  ~~  A )
2 ennum 7839 . . . . . . . 8  |-  ( A 
~~  B  ->  ( A  e.  dom  card  <->  B  e.  dom  card ) )
32biimpa 472 . . . . . . 7  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  B  e.  dom  card )
4 cardid2 7845 . . . . . . 7  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
53, 4syl 16 . . . . . 6  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  ( card `  B
)  ~~  B )
6 ensym 7159 . . . . . . 7  |-  ( A 
~~  B  ->  B  ~~  A )
76adantr 453 . . . . . 6  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  B  ~~  A )
8 entr 7162 . . . . . 6  |-  ( ( ( card `  B
)  ~~  B  /\  B  ~~  A )  -> 
( card `  B )  ~~  A )
95, 7, 8syl2anc 644 . . . . 5  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  ( card `  B
)  ~~  A )
101, 9nsyl3 114 . . . 4  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  -.  ( card `  B
)  e.  ( card `  A ) )
11 cardon 7836 . . . . 5  |-  ( card `  A )  e.  On
12 cardon 7836 . . . . 5  |-  ( card `  B )  e.  On
13 ontri1 4618 . . . . 5  |-  ( ( ( card `  A
)  e.  On  /\  ( card `  B )  e.  On )  ->  (
( card `  A )  C_  ( card `  B
)  <->  -.  ( card `  B )  e.  (
card `  A )
) )
1411, 12, 13mp2an 655 . . . 4  |-  ( (
card `  A )  C_  ( card `  B
)  <->  -.  ( card `  B )  e.  (
card `  A )
)
1510, 14sylibr 205 . . 3  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  ( card `  A
)  C_  ( card `  B ) )
16 cardne 7857 . . . . 5  |-  ( (
card `  A )  e.  ( card `  B
)  ->  -.  ( card `  A )  ~~  B )
17 cardid2 7845 . . . . . 6  |-  ( A  e.  dom  card  ->  (
card `  A )  ~~  A )
18 id 21 . . . . . 6  |-  ( A 
~~  B  ->  A  ~~  B )
19 entr 7162 . . . . . 6  |-  ( ( ( card `  A
)  ~~  A  /\  A  ~~  B )  -> 
( card `  A )  ~~  B )
2017, 18, 19syl2anr 466 . . . . 5  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  ( card `  A
)  ~~  B )
2116, 20nsyl3 114 . . . 4  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  -.  ( card `  A
)  e.  ( card `  B ) )
22 ontri1 4618 . . . . 5  |-  ( ( ( card `  B
)  e.  On  /\  ( card `  A )  e.  On )  ->  (
( card `  B )  C_  ( card `  A
)  <->  -.  ( card `  A )  e.  (
card `  B )
) )
2312, 11, 22mp2an 655 . . . 4  |-  ( (
card `  B )  C_  ( card `  A
)  <->  -.  ( card `  A )  e.  (
card `  B )
)
2421, 23sylibr 205 . . 3  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  ( card `  B
)  C_  ( card `  A ) )
2515, 24eqssd 3367 . 2  |-  ( ( A  ~~  B  /\  A  e.  dom  card )  ->  ( card `  A
)  =  ( card `  B ) )
26 ndmfv 5758 . . . 4  |-  ( -.  A  e.  dom  card  -> 
( card `  A )  =  (/) )
2726adantl 454 . . 3  |-  ( ( A  ~~  B  /\  -.  A  e.  dom  card )  ->  ( card `  A )  =  (/) )
282notbid 287 . . . . 5  |-  ( A 
~~  B  ->  ( -.  A  e.  dom  card  <->  -.  B  e.  dom  card ) )
2928biimpa 472 . . . 4  |-  ( ( A  ~~  B  /\  -.  A  e.  dom  card )  ->  -.  B  e.  dom  card )
30 ndmfv 5758 . . . 4  |-  ( -.  B  e.  dom  card  -> 
( card `  B )  =  (/) )
3129, 30syl 16 . . 3  |-  ( ( A  ~~  B  /\  -.  A  e.  dom  card )  ->  ( card `  B )  =  (/) )
3227, 31eqtr4d 2473 . 2  |-  ( ( A  ~~  B  /\  -.  A  e.  dom  card )  ->  ( card `  A )  =  (
card `  B )
)
3325, 32pm2.61dan 768 1  |-  ( A 
~~  B  ->  ( card `  A )  =  ( card `  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    C_ wss 3322   (/)c0 3630   class class class wbr 4215   Oncon0 4584   dom cdm 4881   ` cfv 5457    ~~ cen 7109   cardccrd 7827
This theorem is referenced by:  card1  7860  carddom2  7869  cardennn  7875  cardsucinf  7876  pm54.43lem  7891  nnacda  8086  ficardun  8087  ackbij1lem5  8109  ackbij1lem8  8112  ackbij1lem9  8113  ackbij2lem2  8125  carden  8431  r1tskina  8662  cardfz  11314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-er 6908  df-en 7113  df-card 7831
  Copyright terms: Public domain W3C validator