MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardinfima Unicode version

Theorem cardinfima 7904
Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of [TakeutiZaring] p. 104. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
cardinfima  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Distinct variable groups:    x, F    x, A
Allowed substitution hint:    B( x)

Proof of Theorem cardinfima
StepHypRef Expression
1 elex 2900 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 isinfcard 7899 . . . . . . . . . . . . 13  |-  ( ( om  C_  ( F `  x )  /\  ( card `  ( F `  x ) )  =  ( F `  x
) )  <->  ( F `  x )  e.  ran  aleph
)
32bicomi 194 . . . . . . . . . . . 12  |-  ( ( F `  x )  e.  ran  aleph  <->  ( om  C_  ( F `  x
)  /\  ( card `  ( F `  x
) )  =  ( F `  x ) ) )
43simplbi 447 . . . . . . . . . . 11  |-  ( ( F `  x )  e.  ran  aleph  ->  om  C_  ( F `  x )
)
5 ffn 5524 . . . . . . . . . . . 12  |-  ( F : A --> ( om  u.  ran  aleph )  ->  F  Fn  A )
6 fnfvelrn 5799 . . . . . . . . . . . . . . . 16  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  ran  F
)
76ex 424 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ran  F
) )
8 fnima 5496 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
98eleq2d 2447 . . . . . . . . . . . . . . 15  |-  ( F  Fn  A  ->  (
( F `  x
)  e.  ( F
" A )  <->  ( F `  x )  e.  ran  F ) )
107, 9sylibrd 226 . . . . . . . . . . . . . 14  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  e.  ( F
" A ) ) )
11 elssuni 3978 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  ( F " A )  ->  ( F `  x )  C_ 
U. ( F " A ) )
1210, 11syl6 31 . . . . . . . . . . . . 13  |-  ( F  Fn  A  ->  (
x  e.  A  -> 
( F `  x
)  C_  U. ( F " A ) ) )
1312imp 419 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
145, 13sylan 458 . . . . . . . . . . 11  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  ->  ( F `  x
)  C_  U. ( F " A ) )
154, 14sylan9ssr 3298 . . . . . . . . . 10  |-  ( ( ( F : A --> ( om  u.  ran  aleph )  /\  x  e.  A )  /\  ( F `  x
)  e.  ran  aleph )  ->  om  C_  U. ( F
" A ) )
1615anasss 629 . . . . . . . . 9  |-  ( ( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) )
1716a1i 11 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  om  C_  U. ( F " A ) ) )
18 carduniima 7903 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  ->  U. ( F " A
)  e.  ( om  u.  ran  aleph ) ) )
19 iscard3 7900 . . . . . . . . . 10  |-  ( (
card `  U. ( F
" A ) )  =  U. ( F
" A )  <->  U. ( F " A )  e.  ( om  u.  ran  aleph
) )
2018, 19syl6ibr 219 . . . . . . . . 9  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) )
2120adantrd 455 . . . . . . . 8  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( card `  U. ( F " A ) )  =  U. ( F " A ) ) )
2217, 21jcad 520 . . . . . . 7  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) ) ) )
23 isinfcard 7899 . . . . . . 7  |-  ( ( om  C_  U. ( F " A )  /\  ( card `  U. ( F
" A ) )  =  U. ( F
" A ) )  <->  U. ( F " A
)  e.  ran  aleph )
2422, 23syl6ib 218 . . . . . 6  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  ( x  e.  A  /\  ( F `  x
)  e.  ran  aleph ) )  ->  U. ( F " A )  e.  ran  aleph
) )
2524exp4d 593 . . . . 5  |-  ( A  e.  _V  ->  ( F : A --> ( om  u.  ran  aleph )  -> 
( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) ) ) )
2625imp 419 . . . 4  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( x  e.  A  ->  ( ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e. 
ran  aleph ) ) )
2726rexlimdv 2765 . . 3  |-  ( ( A  e.  _V  /\  F : A --> ( om  u.  ran  aleph ) )  ->  ( E. x  e.  A  ( F `  x )  e.  ran  aleph  ->  U. ( F " A )  e.  ran  aleph
) )
2827expimpd 587 . 2  |-  ( A  e.  _V  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
291, 28syl 16 1  |-  ( A  e.  B  ->  (
( F : A --> ( om  u.  ran  aleph )  /\  E. x  e.  A  ( F `  x )  e.  ran  aleph )  ->  U. ( F " A
)  e.  ran  aleph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   E.wrex 2643   _Vcvv 2892    u. cun 3254    C_ wss 3256   U.cuni 3950   omcom 4778   ran crn 4812   "cima 4814    Fn wfn 5382   -->wf 5383   ` cfv 5387   cardccrd 7748   alephcale 7749
This theorem is referenced by:  alephfplem4  7914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-inf2 7522
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-se 4476  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-isom 5396  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-oi 7405  df-har 7452  df-card 7752  df-aleph 7753
  Copyright terms: Public domain W3C validator