MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprc Unicode version

Theorem cardprc 7613
Description: The class of all cardinal numbers is not a set (i.e. is a proper class). Theorem 19.8 of [Eisenberg] p. 310. In this proof (which does not use AC), we cannot use Cantor's construction canth3 8183 to ensure that there is always a cardinal larger than a given cardinal, but we can use Hartogs' construction hartogs 7259 to construct (effectively)  ( aleph `  suc  A ) from  ( aleph `  A
), which achieves the same thing. (Contributed by Mario Carneiro, 22-Jan-2013.)
Assertion
Ref Expression
cardprc  |-  { x  |  ( card `  x
)  =  x }  e/  _V

Proof of Theorem cardprc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . 5  |-  ( x  =  y  ->  ( card `  x )  =  ( card `  y
) )
2 id 19 . . . . 5  |-  ( x  =  y  ->  x  =  y )
31, 2eqeq12d 2297 . . . 4  |-  ( x  =  y  ->  (
( card `  x )  =  x  <->  ( card `  y
)  =  y ) )
43cbvabv 2402 . . 3  |-  { x  |  ( card `  x
)  =  x }  =  { y  |  (
card `  y )  =  y }
54cardprclem 7612 . 2  |-  -.  {
x  |  ( card `  x )  =  x }  e.  _V
6 df-nel 2449 . 2  |-  ( { x  |  ( card `  x )  =  x }  e/  _V  <->  -.  { x  |  ( card `  x
)  =  x }  e.  _V )
75, 6mpbir 200 1  |-  { x  |  ( card `  x
)  =  x }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1623    e. wcel 1684   {cab 2269    e/ wnel 2447   _Vcvv 2788   ` cfv 5255   cardccrd 7568
This theorem is referenced by:  alephprc  7726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-oi 7225  df-har 7272  df-card 7572
  Copyright terms: Public domain W3C validator