MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardprclem Unicode version

Theorem cardprclem 7612
Description: Lemma for cardprc 7613. (Contributed by Mario Carneiro, 22-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
cardprclem.1  |-  A  =  { x  |  (
card `  x )  =  x }
Assertion
Ref Expression
cardprclem  |-  -.  A  e.  _V
Distinct variable group:    x, A

Proof of Theorem cardprclem
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardprclem.1 . . . . . . . . 9  |-  A  =  { x  |  (
card `  x )  =  x }
21eleq2i 2347 . . . . . . . 8  |-  ( x  e.  A  <->  x  e.  { x  |  ( card `  x )  =  x } )
3 abid 2271 . . . . . . . 8  |-  ( x  e.  { x  |  ( card `  x
)  =  x }  <->  (
card `  x )  =  x )
4 iscard 7608 . . . . . . . 8  |-  ( (
card `  x )  =  x  <->  ( x  e.  On  /\  A. y  e.  x  y  ~<  x ) )
52, 3, 43bitri 262 . . . . . . 7  |-  ( x  e.  A  <->  ( x  e.  On  /\  A. y  e.  x  y  ~<  x ) )
65simplbi 446 . . . . . 6  |-  ( x  e.  A  ->  x  e.  On )
76ssriv 3184 . . . . 5  |-  A  C_  On
8 ssonuni 4578 . . . . 5  |-  ( A  e.  _V  ->  ( A  C_  On  ->  U. A  e.  On ) )
97, 8mpi 16 . . . 4  |-  ( A  e.  _V  ->  U. A  e.  On )
10 domrefg 6896 . . . . 5  |-  ( U. A  e.  On  ->  U. A  ~<_  U. A )
119, 10syl 15 . . . 4  |-  ( A  e.  _V  ->  U. A  ~<_  U. A )
12 elharval 7277 . . . 4  |-  ( U. A  e.  (har `  U. A )  <->  ( U. A  e.  On  /\  U. A  ~<_  U. A ) )
139, 11, 12sylanbrc 645 . . 3  |-  ( A  e.  _V  ->  U. A  e.  (har `  U. A ) )
147sseli 3176 . . . . . . . 8  |-  ( z  e.  A  ->  z  e.  On )
15 domrefg 6896 . . . . . . . . . 10  |-  ( z  e.  On  ->  z  ~<_  z )
1615ancli 534 . . . . . . . . 9  |-  ( z  e.  On  ->  (
z  e.  On  /\  z  ~<_  z ) )
17 elharval 7277 . . . . . . . . 9  |-  ( z  e.  (har `  z
)  <->  ( z  e.  On  /\  z  ~<_  z ) )
1816, 17sylibr 203 . . . . . . . 8  |-  ( z  e.  On  ->  z  e.  (har `  z )
)
1914, 18syl 15 . . . . . . 7  |-  ( z  e.  A  ->  z  e.  (har `  z )
)
20 harcard 7611 . . . . . . . 8  |-  ( card `  (har `  z )
)  =  (har `  z )
21 fvex 5539 . . . . . . . . 9  |-  (har `  z )  e.  _V
22 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  (har `  z
)  ->  ( card `  x )  =  (
card `  (har `  z
) ) )
23 id 19 . . . . . . . . . 10  |-  ( x  =  (har `  z
)  ->  x  =  (har `  z ) )
2422, 23eqeq12d 2297 . . . . . . . . 9  |-  ( x  =  (har `  z
)  ->  ( ( card `  x )  =  x  <->  ( card `  (har `  z ) )  =  (har `  z )
) )
2521, 24, 1elab2 2917 . . . . . . . 8  |-  ( (har
`  z )  e.  A  <->  ( card `  (har `  z ) )  =  (har `  z )
)
2620, 25mpbir 200 . . . . . . 7  |-  (har `  z )  e.  A
27 eleq2 2344 . . . . . . . . 9  |-  ( w  =  (har `  z
)  ->  ( z  e.  w  <->  z  e.  (har
`  z ) ) )
28 eleq1 2343 . . . . . . . . 9  |-  ( w  =  (har `  z
)  ->  ( w  e.  A  <->  (har `  z )  e.  A ) )
2927, 28anbi12d 691 . . . . . . . 8  |-  ( w  =  (har `  z
)  ->  ( (
z  e.  w  /\  w  e.  A )  <->  ( z  e.  (har `  z )  /\  (har `  z )  e.  A
) ) )
3021, 29spcev 2875 . . . . . . 7  |-  ( ( z  e.  (har `  z )  /\  (har `  z )  e.  A
)  ->  E. w
( z  e.  w  /\  w  e.  A
) )
3119, 26, 30sylancl 643 . . . . . 6  |-  ( z  e.  A  ->  E. w
( z  e.  w  /\  w  e.  A
) )
32 eluni 3830 . . . . . 6  |-  ( z  e.  U. A  <->  E. w
( z  e.  w  /\  w  e.  A
) )
3331, 32sylibr 203 . . . . 5  |-  ( z  e.  A  ->  z  e.  U. A )
3433ssriv 3184 . . . 4  |-  A  C_  U. A
35 harcard 7611 . . . . 5  |-  ( card `  (har `  U. A ) )  =  (har `  U. A )
36 fvex 5539 . . . . . 6  |-  (har `  U. A )  e.  _V
37 fveq2 5525 . . . . . . 7  |-  ( x  =  (har `  U. A )  ->  ( card `  x )  =  ( card `  (har ` 
U. A ) ) )
38 id 19 . . . . . . 7  |-  ( x  =  (har `  U. A )  ->  x  =  (har `  U. A ) )
3937, 38eqeq12d 2297 . . . . . 6  |-  ( x  =  (har `  U. A )  ->  (
( card `  x )  =  x  <->  ( card `  (har ` 
U. A ) )  =  (har `  U. A ) ) )
4036, 39, 1elab2 2917 . . . . 5  |-  ( (har
`  U. A )  e.  A  <->  ( card `  (har ` 
U. A ) )  =  (har `  U. A ) )
4135, 40mpbir 200 . . . 4  |-  (har `  U. A )  e.  A
4234, 41sselii 3177 . . 3  |-  (har `  U. A )  e.  U. A
4313, 42jctir 524 . 2  |-  ( A  e.  _V  ->  ( U. A  e.  (har ` 
U. A )  /\  (har `  U. A )  e.  U. A ) )
44 eloni 4402 . . 3  |-  ( U. A  e.  On  ->  Ord  U. A )
45 ordn2lp 4412 . . 3  |-  ( Ord  U. A  ->  -.  ( U. A  e.  (har ` 
U. A )  /\  (har `  U. A )  e.  U. A ) )
469, 44, 453syl 18 . 2  |-  ( A  e.  _V  ->  -.  ( U. A  e.  (har
`  U. A )  /\  (har `  U. A )  e.  U. A ) )
4743, 46pm2.65i 165 1  |-  -.  A  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   _Vcvv 2788    C_ wss 3152   U.cuni 3827   class class class wbr 4023   Ord word 4391   Oncon0 4392   ` cfv 5255    ~<_ cdom 6861    ~< csdm 6862  harchar 7270   cardccrd 7568
This theorem is referenced by:  cardprc  7613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-oi 7225  df-har 7272  df-card 7572
  Copyright terms: Public domain W3C validator