MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdom2 Unicode version

Theorem cardsdom2 7637
Description: A numerable set is strictly dominated by another iff their cardinalities are strictly ordered. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cardsdom2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  e.  (
card `  B )  <->  A 
~<  B ) )

Proof of Theorem cardsdom2
StepHypRef Expression
1 carddom2 7626 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  C_  ( card `  B )  <->  A  ~<_  B ) )
2 carden2 7636 . . . 4  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  =  (
card `  B )  <->  A 
~~  B ) )
32necon3abid 2492 . . 3  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  =/=  ( card `  B )  <->  -.  A  ~~  B ) )
41, 3anbi12d 691 . 2  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( (
card `  A )  C_  ( card `  B
)  /\  ( card `  A )  =/=  ( card `  B ) )  <-> 
( A  ~<_  B  /\  -.  A  ~~  B ) ) )
5 cardon 7593 . . 3  |-  ( card `  A )  e.  On
6 cardon 7593 . . 3  |-  ( card `  B )  e.  On
7 onelpss 4448 . . 3  |-  ( ( ( card `  A
)  e.  On  /\  ( card `  B )  e.  On )  ->  (
( card `  A )  e.  ( card `  B
)  <->  ( ( card `  A )  C_  ( card `  B )  /\  ( card `  A )  =/=  ( card `  B
) ) ) )
85, 6, 7mp2an 653 . 2  |-  ( (
card `  A )  e.  ( card `  B
)  <->  ( ( card `  A )  C_  ( card `  B )  /\  ( card `  A )  =/=  ( card `  B
) ) )
9 brsdom 6900 . 2  |-  ( A 
~<  B  <->  ( A  ~<_  B  /\  -.  A  ~~  B ) )
104, 8, 93bitr4g 279 1  |-  ( ( A  e.  dom  card  /\  B  e.  dom  card )  ->  ( ( card `  A )  e.  (
card `  B )  <->  A 
~<  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1696    =/= wne 2459    C_ wss 3165   class class class wbr 4039   Oncon0 4408   dom cdm 4705   ` cfv 5271    ~~ cen 6876    ~<_ cdom 6877    ~< csdm 6878   cardccrd 7584
This theorem is referenced by:  domtri2  7638  nnsdomel  7639  indcardi  7684  sdom2en01  7944  cardsdom  8193  smobeth  8224  hargch  8315
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-card 7588
  Copyright terms: Public domain W3C validator