MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardsdomel Unicode version

Theorem cardsdomel 7607
Description: A cardinal strictly dominates its members. Equivalent to Proposition 10.37 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 4-Jun-2015.)
Assertion
Ref Expression
cardsdomel  |-  ( ( A  e.  On  /\  B  e.  dom  card )  ->  ( A  ~<  B  <->  A  e.  ( card `  B )
) )

Proof of Theorem cardsdomel
StepHypRef Expression
1 cardid2 7586 . . . . . . 7  |-  ( B  e.  dom  card  ->  (
card `  B )  ~~  B )
2 ensym 6910 . . . . . . 7  |-  ( (
card `  B )  ~~  B  ->  B  ~~  ( card `  B )
)
31, 2syl 15 . . . . . 6  |-  ( B  e.  dom  card  ->  B 
~~  ( card `  B
) )
4 sdomentr 6995 . . . . . 6  |-  ( ( A  ~<  B  /\  B  ~~  ( card `  B
) )  ->  A  ~<  ( card `  B
) )
53, 4sylan2 460 . . . . 5  |-  ( ( A  ~<  B  /\  B  e.  dom  card )  ->  A  ~<  ( card `  B ) )
6 ssdomg 6907 . . . . . . . 8  |-  ( A  e.  On  ->  (
( card `  B )  C_  A  ->  ( card `  B )  ~<_  A ) )
7 cardon 7577 . . . . . . . . 9  |-  ( card `  B )  e.  On
8 domtriord 7007 . . . . . . . . 9  |-  ( ( ( card `  B
)  e.  On  /\  A  e.  On )  ->  ( ( card `  B
)  ~<_  A  <->  -.  A  ~<  ( card `  B
) ) )
97, 8mpan 651 . . . . . . . 8  |-  ( A  e.  On  ->  (
( card `  B )  ~<_  A 
<->  -.  A  ~<  ( card `  B ) ) )
106, 9sylibd 205 . . . . . . 7  |-  ( A  e.  On  ->  (
( card `  B )  C_  A  ->  -.  A  ~<  ( card `  B
) ) )
1110con2d 107 . . . . . 6  |-  ( A  e.  On  ->  ( A  ~<  ( card `  B
)  ->  -.  ( card `  B )  C_  A ) )
12 ontri1 4426 . . . . . . . 8  |-  ( ( ( card `  B
)  e.  On  /\  A  e.  On )  ->  ( ( card `  B
)  C_  A  <->  -.  A  e.  ( card `  B
) ) )
137, 12mpan 651 . . . . . . 7  |-  ( A  e.  On  ->  (
( card `  B )  C_  A  <->  -.  A  e.  ( card `  B )
) )
1413con2bid 319 . . . . . 6  |-  ( A  e.  On  ->  ( A  e.  ( card `  B )  <->  -.  ( card `  B )  C_  A ) )
1511, 14sylibrd 225 . . . . 5  |-  ( A  e.  On  ->  ( A  ~<  ( card `  B
)  ->  A  e.  ( card `  B )
) )
165, 15syl5 28 . . . 4  |-  ( A  e.  On  ->  (
( A  ~<  B  /\  B  e.  dom  card )  ->  A  e.  ( card `  B ) ) )
1716exp3acom23 1362 . . 3  |-  ( A  e.  On  ->  ( B  e.  dom  card  ->  ( A  ~<  B  ->  A  e.  ( card `  B
) ) ) )
1817imp 418 . 2  |-  ( ( A  e.  On  /\  B  e.  dom  card )  ->  ( A  ~<  B  ->  A  e.  ( card `  B ) ) )
19 cardsdomelir 7606 . 2  |-  ( A  e.  ( card `  B
)  ->  A  ~<  B )
2018, 19impbid1 194 1  |-  ( ( A  e.  On  /\  B  e.  dom  card )  ->  ( A  ~<  B  <->  A  e.  ( card `  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    C_ wss 3152   class class class wbr 4023   Oncon0 4392   dom cdm 4689   ` cfv 5255    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   cardccrd 7568
This theorem is referenced by:  iscard  7608  cardval2  7624  infxpenlem  7641  alephnbtwn  7698  alephnbtwn2  7699  alephord2  7703  alephsdom  7713  pwsdompw  7830  inaprc  8458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-card 7572
  Copyright terms: Public domain W3C validator