MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardval2 Unicode version

Theorem cardval2 7842
Description: An alternate version of the value of the cardinal number of a set. Compare cardval 8385. This theorem could be used to give us a simpler definition of  card in place of df-card 7790. It apparently does not occur in the literature. (Contributed by NM, 7-Nov-2003.)
Assertion
Ref Expression
cardval2  |-  ( A  e.  dom  card  ->  (
card `  A )  =  { x  e.  On  |  x  ~<  A }
)
Distinct variable group:    x, A

Proof of Theorem cardval2
StepHypRef Expression
1 cardsdomel 7825 . . . . . 6  |-  ( ( x  e.  On  /\  A  e.  dom  card )  ->  ( x  ~<  A  <->  x  e.  ( card `  A )
) )
21ancoms 440 . . . . 5  |-  ( ( A  e.  dom  card  /\  x  e.  On )  ->  ( x  ~<  A  <-> 
x  e.  ( card `  A ) ) )
32pm5.32da 623 . . . 4  |-  ( A  e.  dom  card  ->  ( ( x  e.  On  /\  x  ~<  A )  <->  ( x  e.  On  /\  x  e.  ( card `  A ) ) ) )
4 cardon 7795 . . . . . 6  |-  ( card `  A )  e.  On
54oneli 4656 . . . . 5  |-  ( x  e.  ( card `  A
)  ->  x  e.  On )
65pm4.71ri 615 . . . 4  |-  ( x  e.  ( card `  A
)  <->  ( x  e.  On  /\  x  e.  ( card `  A
) ) )
73, 6syl6rbbr 256 . . 3  |-  ( A  e.  dom  card  ->  ( x  e.  ( card `  A )  <->  ( x  e.  On  /\  x  ~<  A ) ) )
87abbi2dv 2527 . 2  |-  ( A  e.  dom  card  ->  (
card `  A )  =  { x  |  ( x  e.  On  /\  x  ~<  A ) } )
9 df-rab 2683 . 2  |-  { x  e.  On  |  x  ~<  A }  =  { x  |  ( x  e.  On  /\  x  ~<  A ) }
108, 9syl6eqr 2462 1  |-  ( A  e.  dom  card  ->  (
card `  A )  =  { x  e.  On  |  x  ~<  A }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2398   {crab 2678   class class class wbr 4180   Oncon0 4549   dom cdm 4845   ` cfv 5421    ~< csdm 7075   cardccrd 7786
This theorem is referenced by:  ondomon  8402  alephsuc3  8419
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-sbc 3130  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-card 7790
  Copyright terms: Public domain W3C validator