MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catass Unicode version

Theorem catass 13604
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b  |-  B  =  ( Base `  C
)
catcocl.h  |-  H  =  (  Hom  `  C
)
catcocl.o  |-  .x.  =  (comp `  C )
catcocl.c  |-  ( ph  ->  C  e.  Cat )
catcocl.x  |-  ( ph  ->  X  e.  B )
catcocl.y  |-  ( ph  ->  Y  e.  B )
catcocl.z  |-  ( ph  ->  Z  e.  B )
catcocl.f  |-  ( ph  ->  F  e.  ( X H Y ) )
catcocl.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
catass.w  |-  ( ph  ->  W  e.  B )
catass.g  |-  ( ph  ->  K  e.  ( Z H W ) )
Assertion
Ref Expression
catass  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) )

Proof of Theorem catass
Dummy variables  f 
g  k  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3  |-  ( ph  ->  C  e.  Cat )
2 catcocl.b . . . . 5  |-  B  =  ( Base `  C
)
3 catcocl.h . . . . 5  |-  H  =  (  Hom  `  C
)
4 catcocl.o . . . . 5  |-  .x.  =  (comp `  C )
52, 3, 4iscat 13590 . . . 4  |-  ( C  e.  Cat  ->  ( C  e.  Cat  <->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) ) )
65ibi 232 . . 3  |-  ( C  e.  Cat  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
71, 6syl 15 . 2  |-  ( ph  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
8 catcocl.x . . 3  |-  ( ph  ->  X  e.  B )
9 catcocl.y . . . . . 6  |-  ( ph  ->  Y  e.  B )
109adantr 451 . . . . 5  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
11 catcocl.z . . . . . . 7  |-  ( ph  ->  Z  e.  B )
1211ad2antrr 706 . . . . . 6  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  B )
13 catcocl.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( X H Y ) )
1413ad3antrrr 710 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X H Y ) )
15 simpllr 735 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
16 simplr 731 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
1715, 16oveq12d 5892 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x H y )  =  ( X H Y ) )
1814, 17eleqtrrd 2373 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x H y ) )
19 catcocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y H Z ) )
2019ad4antr 712 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( Y H Z ) )
21 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  y  =  Y )
22 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  z  =  Z )
2321, 22oveq12d 5892 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  (
y H z )  =  ( Y H Z ) )
2420, 23eleqtrrd 2373 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y H z ) )
25 catass.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  B )
2625ad5antr 714 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  W  e.  B )
27 catass.g . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  ( Z H W ) )
2827ad6antr 716 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  ->  K  e.  ( Z H W ) )
29 simp-4r 743 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  ->  z  =  Z )
30 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  ->  w  =  W )
3129, 30oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  ->  (
z H w )  =  ( Z H W ) )
3228, 31eleqtrrd 2373 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  ->  K  e.  ( z H w ) )
33 simp-7r 749 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  x  =  X )
34 simp-6r 747 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  y  =  Y )
3533, 34opeq12d 3820 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  <. x ,  y >.  =  <. X ,  Y >. )
36 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  w  =  W )
3735, 36oveq12d 5892 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  ( <. x ,  y >.  .x.  w )  =  (
<. X ,  Y >.  .x. 
W ) )
38 simp-5r 745 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  z  =  Z )
3934, 38opeq12d 3820 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  <. y ,  z >.  =  <. Y ,  Z >. )
4039, 36oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  ( <. y ,  z >.  .x.  w )  =  (
<. Y ,  Z >.  .x. 
W ) )
41 simpr 447 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  k  =  K )
42 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  g  =  G )
4340, 41, 42oveq123d 5895 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  (
k ( <. y ,  z >.  .x.  w
) g )  =  ( K ( <. Y ,  Z >.  .x. 
W ) G ) )
44 simp-4r 743 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  f  =  F )
4537, 43, 44oveq123d 5895 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  (
( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x. 
W ) F ) )
4633, 38opeq12d 3820 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  <. x ,  z >.  =  <. X ,  Z >. )
4746, 36oveq12d 5892 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  ( <. x ,  z >.  .x.  w )  =  (
<. X ,  Z >.  .x. 
W ) )
4835, 38oveq12d 5892 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
4948, 42, 44oveq123d 5895 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
5047, 41, 49oveq123d 5895 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  (
k ( <. x ,  z >.  .x.  w
) ( g (
<. x ,  y >.  .x.  z ) f ) )  =  ( K ( <. X ,  Z >.  .x.  W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) )
5145, 50eqeq12d 2310 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  /\  k  =  K )  ->  (
( ( k (
<. y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) )  <-> 
( ( K (
<. Y ,  Z >.  .x. 
W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
5232, 51rspcdv 2900 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  /\  w  =  W )  ->  ( A. k  e.  (
z H w ) ( ( k (
<. y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W )
( G ( <. X ,  Y >.  .x. 
Z ) F ) ) ) )
5326, 52rspcimdv 2898 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( A. w  e.  B  A. k  e.  (
z H w ) ( ( k (
<. y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W )
( G ( <. X ,  Y >.  .x. 
Z ) F ) ) ) )
5453adantld 453 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x. 
W ) F )  =  ( K (
<. X ,  Z >.  .x. 
W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
5524, 54rspcimdv 2898 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y H z ) ( ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x. 
W ) F )  =  ( K (
<. X ,  Z >.  .x. 
W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
5618, 55rspcimdv 2898 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x. 
W ) F )  =  ( K (
<. X ,  Z >.  .x. 
W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
5712, 56rspcimdv 2898 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x. 
W ) F )  =  ( K (
<. X ,  Z >.  .x. 
W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
5810, 57rspcimdv 2898 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( ( K ( <. Y ,  Z >.  .x.  W ) G ) ( <. X ,  Y >.  .x. 
W ) F )  =  ( K (
<. X ,  Z >.  .x. 
W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
5958adantld 453 . . 3  |-  ( (
ph  /\  x  =  X )  ->  (
( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  (
( K ( <. Y ,  Z >.  .x. 
W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
608, 59rspcimdv 2898 . 2  |-  ( ph  ->  ( A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. k  e.  ( z H w ) ( ( k ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( k ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  (
( K ( <. Y ,  Z >.  .x. 
W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) ) )
617, 60mpd 14 1  |-  ( ph  ->  ( ( K (
<. Y ,  Z >.  .x. 
W ) G ) ( <. X ,  Y >.  .x.  W ) F )  =  ( K ( <. X ,  Z >.  .x.  W ) ( G ( <. X ,  Y >.  .x.  Z ) F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   <.cop 3656   ` cfv 5271  (class class class)co 5874   Basecbs 13164    Hom chom 13235  compcco 13236   Catccat 13582
This theorem is referenced by:  oppccatid  13638  sectcan  13674  sectco  13675  sectmon  13696  monsect  13697  subccatid  13736  fuccocl  13854  fucass  13858  invfuc  13864  arwass  13922  xpccatid  13978  evlfcllem  14011  hofcllem  14048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-cat 13586
  Copyright terms: Public domain W3C validator