MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catciso Unicode version

Theorem catciso 14182
Description: A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
catciso.c  |-  C  =  (CatCat `  U )
catciso.b  |-  B  =  ( Base `  C
)
catciso.r  |-  R  =  ( Base `  X
)
catciso.s  |-  S  =  ( Base `  Y
)
catciso.u  |-  ( ph  ->  U  e.  V )
catciso.x  |-  ( ph  ->  X  e.  B )
catciso.y  |-  ( ph  ->  Y  e.  B )
catciso.i  |-  I  =  (  Iso  `  C
)
Assertion
Ref Expression
catciso  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
( F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) ) )

Proof of Theorem catciso
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 13979 . . . . 5  |-  Rel  ( X  Func  Y )
2 catciso.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  C
)
3 eqid 2380 . . . . . . . . . . . . . 14  |-  (Inv `  C )  =  (Inv
`  C )
4 catciso.u . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  V )
5 catciso.c . . . . . . . . . . . . . . . 16  |-  C  =  (CatCat `  U )
65catccat 14179 . . . . . . . . . . . . . . 15  |-  ( U  e.  V  ->  C  e.  Cat )
74, 6syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  Cat )
8 catciso.x . . . . . . . . . . . . . 14  |-  ( ph  ->  X  e.  B )
9 catciso.y . . . . . . . . . . . . . 14  |-  ( ph  ->  Y  e.  B )
10 catciso.i . . . . . . . . . . . . . 14  |-  I  =  (  Iso  `  C
)
112, 3, 7, 8, 9, 10isoval 13910 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X I Y )  =  dom  ( X (Inv `  C ) Y ) )
1211eleq2d 2447 . . . . . . . . . . . 12  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
F  e.  dom  ( X (Inv `  C ) Y ) ) )
1312biimpa 471 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  dom  ( X (Inv `  C ) Y ) )
147adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  C  e.  Cat )
158adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  X  e.  B )
169adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Y  e.  B )
172, 3, 14, 15, 16invfun 13909 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Fun  ( X (Inv `  C ) Y ) )
18 funfvbrb 5775 . . . . . . . . . . . 12  |-  ( Fun  ( X (Inv `  C ) Y )  ->  ( F  e. 
dom  ( X (Inv
`  C ) Y )  <->  F ( X (Inv
`  C ) Y ) ( ( X (Inv `  C ) Y ) `  F
) ) )
1917, 18syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  dom  ( X (Inv
`  C ) Y )  <->  F ( X (Inv
`  C ) Y ) ( ( X (Inv `  C ) Y ) `  F
) ) )
2013, 19mpbid 202 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F ( X (Inv `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )
21 eqid 2380 . . . . . . . . . . 11  |-  (Sect `  C )  =  (Sect `  C )
222, 3, 14, 15, 16, 21isinv 13905 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Inv `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  <-> 
( F ( X (Sect `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F )  /\  (
( X (Inv `  C ) Y ) `
 F ) ( Y (Sect `  C
) X ) F ) ) )
2320, 22mpbid 202 . . . . . . . . 9  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Sect `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  /\  ( ( X (Inv `  C ) Y ) `  F
) ( Y (Sect `  C ) X ) F ) )
2423simpld 446 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F ( X (Sect `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )
25 eqid 2380 . . . . . . . . 9  |-  (  Hom  `  C )  =  (  Hom  `  C )
26 eqid 2380 . . . . . . . . 9  |-  (comp `  C )  =  (comp `  C )
27 eqid 2380 . . . . . . . . 9  |-  ( Id
`  C )  =  ( Id `  C
)
282, 25, 26, 27, 21, 14, 15, 16issect 13899 . . . . . . . 8  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( X (Sect `  C ) Y ) ( ( X (Inv
`  C ) Y ) `  F )  <-> 
( F  e.  ( X (  Hom  `  C
) Y )  /\  ( ( X (Inv
`  C ) Y ) `  F )  e.  ( Y (  Hom  `  C ) X )  /\  (
( ( X (Inv
`  C ) Y ) `  F ) ( <. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id
`  C ) `  X ) ) ) )
2924, 28mpbid 202 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  ( X (  Hom  `  C ) Y )  /\  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y (  Hom  `  C
) X )  /\  ( ( ( X (Inv `  C ) Y ) `  F
) ( <. X ,  Y >. (comp `  C
) X ) F )  =  ( ( Id `  C ) `
 X ) ) )
3029simp1d 969 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( X (  Hom  `  C
) Y ) )
315, 2, 4, 25, 8, 9catchom 14174 . . . . . . 7  |-  ( ph  ->  ( X (  Hom  `  C ) Y )  =  ( X  Func  Y ) )
3231adantr 452 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( X
(  Hom  `  C ) Y )  =  ( X  Func  Y )
)
3330, 32eleqtrd 2456 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( X  Func  Y ) )
34 1st2nd 6325 . . . . 5  |-  ( ( Rel  ( X  Func  Y )  /\  F  e.  ( X  Func  Y
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
351, 33, 34sylancr 645 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
36 1st2ndbr 6328 . . . . . . 7  |-  ( ( Rel  ( X  Func  Y )  /\  F  e.  ( X  Func  Y
) )  ->  ( 1st `  F ) ( X  Func  Y )
( 2nd `  F
) )
371, 33, 36sylancr 645 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) ( X 
Func  Y ) ( 2nd `  F ) )
38 catciso.r . . . . . . . . . 10  |-  R  =  ( Base `  X
)
39 eqid 2380 . . . . . . . . . 10  |-  (  Hom  `  X )  =  (  Hom  `  X )
40 eqid 2380 . . . . . . . . . 10  |-  (  Hom  `  Y )  =  (  Hom  `  Y )
4137adantr 452 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  F ) ( X 
Func  Y ) ( 2nd `  F ) )
42 simprl 733 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  x  e.  R )
43 simprr 734 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  y  e.  R )
4438, 39, 40, 41, 42, 43funcf2 13985 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  F
) y ) : ( x (  Hom  `  X ) y ) --> ( ( ( 1st `  F ) `  x
) (  Hom  `  Y
) ( ( 1st `  F ) `  y
) ) )
45 catciso.s . . . . . . . . . . 11  |-  S  =  ( Base `  Y
)
46 relfunc 13979 . . . . . . . . . . . . 13  |-  Rel  ( Y  Func  X )
4729simp2d 970 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y (  Hom  `  C
) X ) )
485, 2, 4, 25, 9, 8catchom 14174 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Y (  Hom  `  C ) X )  =  ( Y  Func  X ) )
4948adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( Y
(  Hom  `  C ) X )  =  ( Y  Func  X )
)
5047, 49eleqtrd 2456 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y 
Func  X ) )
51 1st2ndbr 6328 . . . . . . . . . . . . 13  |-  ( ( Rel  ( Y  Func  X )  /\  ( ( X (Inv `  C
) Y ) `  F )  e.  ( Y  Func  X )
)  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5246, 50, 51sylancr 645 . . . . . . . . . . . 12  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5352adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ( Y  Func  X ) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) )
5438, 45, 41funcf1 13983 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  F ) : R --> S )
5554, 42ffvelrnd 5803 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  F ) `  x )  e.  S
)
5654, 43ffvelrnd 5803 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  F ) `  y )  e.  S
)
5745, 40, 39, 53, 55, 56funcf2 13985 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  x )
) (  Hom  `  X
) ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) ) )
58 eqidd 2381 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
)  =  ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
5929simp3d 971 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( Id `  C
) `  X )
)
604adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  U  e.  V )
615, 2, 60, 26, 15, 16, 15, 33, 50catcco 14176 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) (
<. X ,  Y >. (comp `  C ) X ) F )  =  ( ( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) )
62 eqid 2380 . . . . . . . . . . . . . . . . . . 19  |-  (idfunc `  X
)  =  (idfunc `  X
)
635, 2, 27, 62, 4, 8catcid 14178 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( Id `  C ) `  X
)  =  (idfunc `  X
) )
6463adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( Id `  C ) `  X )  =  (idfunc `  X ) )
6559, 61, 643eqtr3d 2420 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F )  o.func  F
)  =  (idfunc `  X
) )
6665adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( X (Inv `  C ) Y ) `
 F )  o.func  F
)  =  (idfunc `  X
) )
6766fveq2d 5665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 1st `  (idfunc `  X
) ) )
6867fveq1d 5663 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  x )  =  ( ( 1st `  (idfunc `  X ) ) `  x ) )
6933adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  F  e.  ( X  Func  Y ) )
7050adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y 
Func  X ) )
7138, 69, 70, 42cofu1 14001 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  x )  =  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 x ) ) )
725, 2, 4catcbas 14172 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
73 inss2 3498 . . . . . . . . . . . . . . . . 17  |-  ( U  i^i  Cat )  C_  Cat
7472, 73syl6eqss 3334 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  B  C_  Cat )
7574, 8sseldd 3285 . . . . . . . . . . . . . . 15  |-  ( ph  ->  X  e.  Cat )
7675ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  X  e.  Cat )
7762, 38, 76, 42idfu1 13997 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  (idfunc `  X ) ) `  x )  =  x )
7868, 71, 773eqtr3d 2420 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) `  (
( 1st `  F
) `  x )
)  =  x )
7967fveq1d 5663 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  y )  =  ( ( 1st `  (idfunc `  X ) ) `  y ) )
8038, 69, 70, 43cofu1 14001 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( ( X (Inv `  C
) Y ) `  F )  o.func  F )
) `  y )  =  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) )
8162, 38, 76, 43idfu1 13997 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  (idfunc `  X ) ) `  y )  =  y )
8279, 80, 813eqtr3d 2420 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) `  (
( 1st `  F
) `  y )
)  =  y )
8378, 82oveq12d 6031 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) (  Hom  `  X ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  =  ( x (  Hom  `  X
) y ) )
8458, 83feq23d 5521 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  x )
) (  Hom  `  X
) ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) `  ( ( 1st `  F ) `
 y ) ) )  <->  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x (  Hom  `  X )
y ) ) )
8557, 84mpbid 202 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x (  Hom  `  X )
y ) )
8623simprd 450 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( X (Inv `  C ) Y ) `  F
) ( Y (Sect `  C ) X ) F )
872, 25, 26, 27, 21, 14, 16, 15issect 13899 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F ) ( Y (Sect `  C
) X ) F  <-> 
( ( ( X (Inv `  C ) Y ) `  F
)  e.  ( Y (  Hom  `  C
) X )  /\  F  e.  ( X
(  Hom  `  C ) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) ( ( X (Inv `  C ) Y ) `
 F ) )  =  ( ( Id
`  C ) `  Y ) ) ) )
8886, 87mpbid 202 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( (
( X (Inv `  C ) Y ) `
 F )  e.  ( Y (  Hom  `  C ) X )  /\  F  e.  ( X (  Hom  `  C
) Y )  /\  ( F ( <. Y ,  X >. (comp `  C
) Y ) ( ( X (Inv `  C ) Y ) `
 F ) )  =  ( ( Id
`  C ) `  Y ) ) )
8988simp3d 971 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )  =  ( ( Id `  C ) `  Y
) )
905, 2, 60, 26, 16, 15, 16, 50, 33catcco 14176 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F
( <. Y ,  X >. (comp `  C ) Y ) ( ( X (Inv `  C
) Y ) `  F ) )  =  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )
91 eqid 2380 . . . . . . . . . . . . . . . 16  |-  (idfunc `  Y
)  =  (idfunc `  Y
)
925, 2, 27, 91, 4, 9catcid 14178 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( Id `  C ) `  Y
)  =  (idfunc `  Y
) )
9392adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( Id `  C ) `  Y )  =  (idfunc `  Y ) )
9489, 90, 933eqtr3d 2420 . . . . . . . . . . . . 13  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) )  =  (idfunc `  Y
) )
9594adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) )  =  (idfunc `  Y
) )
9695fveq2d 5665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 2nd `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( 2nd `  (idfunc `  Y
) ) )
9796oveqd 6030 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( ( 1st `  F ) `
 x ) ( 2nd `  (idfunc `  Y
) ) ( ( 1st `  F ) `
 y ) ) )
9845, 70, 69, 55, 56cofu2nd 14002 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( ( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  o.  (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
9978, 82oveq12d 6031 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  =  ( x ( 2nd `  F
) y ) )
10099coeq1d 4967 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) `
 ( ( 1st `  F ) `  x
) ) ( 2nd `  F ) ( ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) `  ( ( 1st `  F
) `  y )
) )  o.  (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  ( ( x ( 2nd `  F ) y )  o.  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) ) )
10198, 100eqtrd 2412 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  ( F  o.func  ( ( X (Inv
`  C ) Y ) `  F ) ) ) ( ( 1st `  F ) `
 y ) )  =  ( ( x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
10274ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  B  C_  Cat )
1039ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  Y  e.  B )
104102, 103sseldd 3285 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  Y  e.  Cat )
10591, 45, 104, 40, 55, 56idfu2nd 13994 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( 1st `  F
) `  x )
( 2nd `  (idfunc `  Y
) ) ( ( 1st `  F ) `
 y ) )  =  (  _I  |`  (
( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
10697, 101, 1053eqtr3d 2420 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  (  _I  |`  ( (
( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
10766fveq2d 5665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( 2nd `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 2nd `  (idfunc `  X
) ) )
108107oveqd 6030 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (
( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) ) y )  =  ( x ( 2nd `  (idfunc `  X
) ) y ) )
10938, 69, 70, 42, 43cofu2nd 14002 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (
( ( X (Inv
`  C ) Y ) `  F )  o.func 
F ) ) y )  =  ( ( ( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) ) )
11062, 38, 76, 39, 42, 43idfu2nd 13994 . . . . . . . . . 10  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  (idfunc `  X
) ) y )  =  (  _I  |`  (
x (  Hom  `  X
) y ) ) )
111108, 109, 1103eqtr3d 2420 . . . . . . . . 9  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
( ( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) )  =  (  _I  |`  (
x (  Hom  `  X
) y ) ) )
112 fcof1o 5958 . . . . . . . . 9  |-  ( ( ( ( x ( 2nd `  F ) y ) : ( x (  Hom  `  X
) y ) --> ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
)  /\  ( (
( 1st `  F
) `  x )
( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) : ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) --> ( x (  Hom  `  X )
y ) )  /\  ( ( ( x ( 2nd `  F
) y )  o.  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) )  =  (  _I  |`  ( (
( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) )  /\  (
( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
)  o.  ( x ( 2nd `  F
) y ) )  =  (  _I  |`  (
x (  Hom  `  X
) y ) ) ) )  ->  (
( x ( 2nd `  F ) y ) : ( x (  Hom  `  X )
y ) -1-1-onto-> ( ( ( 1st `  F ) `  x
) (  Hom  `  Y
) ( ( 1st `  F ) `  y
) )  /\  `' ( x ( 2nd `  F ) y )  =  ( ( ( 1st `  F ) `
 x ) ( 2nd `  ( ( X (Inv `  C
) Y ) `  F ) ) ( ( 1st `  F
) `  y )
) ) )
11344, 85, 106, 111, 112syl22anc 1185 . . . . . . . 8  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( (
x ( 2nd `  F
) y ) : ( x (  Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
)  /\  `' (
x ( 2nd `  F
) y )  =  ( ( ( 1st `  F ) `  x
) ( 2nd `  (
( X (Inv `  C ) Y ) `
 F ) ) ( ( 1st `  F
) `  y )
) ) )
114113simpld 446 . . . . . . 7  |-  ( ( ( ph  /\  F  e.  ( X I Y ) )  /\  (
x  e.  R  /\  y  e.  R )
)  ->  ( x
( 2nd `  F
) y ) : ( x (  Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
115114ralrimivva 2734 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  A. x  e.  R  A. y  e.  R  ( x
( 2nd `  F
) y ) : ( x (  Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) )
11638, 39, 40isffth2 14033 . . . . . 6  |-  ( ( 1st `  F ) ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) ( 2nd `  F )  <->  ( ( 1st `  F ) ( X  Func  Y )
( 2nd `  F
)  /\  A. x  e.  R  A. y  e.  R  ( x
( 2nd `  F
) y ) : ( x (  Hom  `  X ) y ) -1-1-onto-> ( ( ( 1st `  F
) `  x )
(  Hom  `  Y ) ( ( 1st `  F
) `  y )
) ) )
11737, 115, 116sylanbrc 646 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) ( ( X Full  Y )  i^i  ( X Faith  Y ) ) ( 2nd `  F
) )
118 df-br 4147 . . . . 5  |-  ( ( 1st `  F ) ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) ( 2nd `  F )  <->  <. ( 1st `  F ) ,  ( 2nd `  F )
>.  e.  ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) )
119117, 118sylib 189 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  <. ( 1st `  F ) ,  ( 2nd `  F )
>.  e.  ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) )
12035, 119eqeltrd 2454 . . 3  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) ) )
12138, 45, 37funcf1 13983 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) : R --> S )
12245, 38, 52funcf1 13983 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) : S --> R )
12394fveq2d 5665 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( 1st `  (idfunc `  Y
) ) )
12445, 50, 33cofu1st 14000 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( F  o.func  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  ( ( 1st `  F
)  o.  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ) )
12574, 9sseldd 3285 . . . . . . . 8  |-  ( ph  ->  Y  e.  Cat )
126125adantr 452 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  Y  e.  Cat )
12791, 45, 126idfu1st 13996 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  (idfunc `  Y ) )  =  (  _I  |`  S ) )
128123, 124, 1273eqtr3d 2420 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  F )  o.  ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) )  =  (  _I  |`  S ) )
12965fveq2d 5665 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( 1st `  (idfunc `  X
) ) )
13038, 33, 50cofu1st 14000 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  ( ( ( X (Inv `  C ) Y ) `  F
)  o.func 
F ) )  =  ( ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) )  o.  ( 1st `  F
) ) )
13175adantr 452 . . . . . . 7  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  X  e.  Cat )
13262, 38, 131idfu1st 13996 . . . . . 6  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  (idfunc `  X ) )  =  (  _I  |`  R ) )
133129, 130, 1323eqtr3d 2420 . . . . 5  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) )  o.  ( 1st `  F ) )  =  (  _I  |`  R ) )
134 fcof1o 5958 . . . . 5  |-  ( ( ( ( 1st `  F
) : R --> S  /\  ( 1st `  ( ( X (Inv `  C
) Y ) `  F ) ) : S --> R )  /\  ( ( ( 1st `  F )  o.  ( 1st `  ( ( X (Inv `  C ) Y ) `  F
) ) )  =  (  _I  |`  S )  /\  ( ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) )  o.  ( 1st `  F ) )  =  (  _I  |`  R ) ) )  ->  (
( 1st `  F
) : R -1-1-onto-> S  /\  `' ( 1st `  F
)  =  ( 1st `  ( ( X (Inv
`  C ) Y ) `  F ) ) ) )
135121, 122, 128, 133, 134syl22anc 1185 . . . 4  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( ( 1st `  F ) : R -1-1-onto-> S  /\  `' ( 1st `  F )  =  ( 1st `  (
( X (Inv `  C ) Y ) `
 F ) ) ) )
136135simpld 446 . . 3  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( 1st `  F ) : R -1-1-onto-> S
)
137120, 136jca 519 . 2  |-  ( (
ph  /\  F  e.  ( X I Y ) )  ->  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )
1387adantr 452 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  C  e.  Cat )
1398adantr 452 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  X  e.  B )
1409adantr 452 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  Y  e.  B )
141 inss1 3497 . . . . . . 7  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X Full  Y )
142 fullfunc 14023 . . . . . . 7  |-  ( X Full 
Y )  C_  ( X  Func  Y )
143141, 142sstri 3293 . . . . . 6  |-  ( ( X Full  Y )  i^i  ( X Faith  Y ) )  C_  ( X  Func  Y )
144 simprl 733 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y ) ) )
145143, 144sseldi 3282 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( X  Func  Y ) )
1461, 145, 34sylancr 645 . . . 4  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F )
>. )
1474adantr 452 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  U  e.  V )
148 eqid 2380 . . . . 5  |-  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F ) `  x
) ( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) )  =  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F ) `  x
) ( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) )
149146, 144eqeltrrd 2455 . . . . . 6  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  <. ( 1st `  F
) ,  ( 2nd `  F ) >.  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) ) )
150149, 118sylibr 204 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  -> 
( 1st `  F
) ( ( X Full 
Y )  i^i  ( X Faith  Y ) ) ( 2nd `  F ) )
151 simprr 734 . . . . 5  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  -> 
( 1st `  F
) : R -1-1-onto-> S )
1525, 2, 38, 45, 147, 139, 140, 3, 148, 150, 151catcisolem 14181 . . . 4  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  <. ( 1st `  F
) ,  ( 2nd `  F ) >. ( X (Inv `  C ) Y ) <. `' ( 1st `  F ) ,  ( x  e.  S ,  y  e.  S  |->  `' ( ( `' ( 1st `  F
) `  x )
( 2nd `  F
) ( `' ( 1st `  F ) `
 y ) ) ) >. )
153146, 152eqbrtrd 4166 . . 3  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F ( X (Inv
`  C ) Y ) <. `' ( 1st `  F ) ,  ( x  e.  S , 
y  e.  S  |->  `' ( ( `' ( 1st `  F ) `
 x ) ( 2nd `  F ) ( `' ( 1st `  F ) `  y
) ) ) >.
)
1542, 3, 138, 139, 140, 10, 153inviso1 13911 . 2  |-  ( (
ph  /\  ( F  e.  ( ( X Full  Y
)  i^i  ( X Faith  Y ) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) )  ->  F  e.  ( X I Y ) )
155137, 154impbida 806 1  |-  ( ph  ->  ( F  e.  ( X I Y )  <-> 
( F  e.  ( ( X Full  Y )  i^i  ( X Faith  Y
) )  /\  ( 1st `  F ) : R -1-1-onto-> S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642    i^i cin 3255    C_ wss 3256   <.cop 3753   class class class wbr 4146    _I cid 4427   `'ccnv 4810   dom cdm 4811    |` cres 4813    o. ccom 4815   Rel wrel 4816   Fun wfun 5381   -->wf 5383   -1-1-onto->wf1o 5386   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015   1stc1st 6279   2ndc2nd 6280   Basecbs 13389    Hom chom 13460  compcco 13461   Catccat 13809   Idccid 13810  Sectcsect 13890  Invcinv 13891    Iso ciso 13892    Func cfunc 13971  idfunccidfu 13972    o.func ccofu 13973   Full cful 14019   Faith cfth 14020  CatCatccatc 14169
This theorem is referenced by:  yoniso  14302
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-ixp 6993  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-hom 13473  df-cco 13474  df-cat 13813  df-cid 13814  df-sect 13893  df-inv 13894  df-iso 13895  df-func 13975  df-idfu 13976  df-cofu 13977  df-full 14021  df-fth 14022  df-catc 14170
  Copyright terms: Public domain W3C validator