MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcocl Structured version   Unicode version

Theorem catcocl 13910
Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b  |-  B  =  ( Base `  C
)
catcocl.h  |-  H  =  (  Hom  `  C
)
catcocl.o  |-  .x.  =  (comp `  C )
catcocl.c  |-  ( ph  ->  C  e.  Cat )
catcocl.x  |-  ( ph  ->  X  e.  B )
catcocl.y  |-  ( ph  ->  Y  e.  B )
catcocl.z  |-  ( ph  ->  Z  e.  B )
catcocl.f  |-  ( ph  ->  F  e.  ( X H Y ) )
catcocl.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
Assertion
Ref Expression
catcocl  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )

Proof of Theorem catcocl
Dummy variables  f 
g  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . 3  |-  ( ph  ->  C  e.  Cat )
2 catcocl.b . . . . 5  |-  B  =  ( Base `  C
)
3 catcocl.h . . . . 5  |-  H  =  (  Hom  `  C
)
4 catcocl.o . . . . 5  |-  .x.  =  (comp `  C )
52, 3, 4iscat 13897 . . . 4  |-  ( C  e.  Cat  ->  ( C  e.  Cat  <->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) ) )
65ibi 233 . . 3  |-  ( C  e.  Cat  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
7 simpl 444 . . . . . . . . 9  |-  ( ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( g
( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z ) )
87ralimi 2781 . . . . . . . 8  |-  ( A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
98ralimi 2781 . . . . . . 7  |-  ( A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
109ralimi 2781 . . . . . 6  |-  ( A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1110ralimi 2781 . . . . 5  |-  ( A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1211adantl 453 . . . 4  |-  ( ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1312ralimi 2781 . . 3  |-  ( A. x  e.  B  ( E. g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
141, 6, 133syl 19 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
15 catcocl.x . . 3  |-  ( ph  ->  X  e.  B )
16 catcocl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
1716adantr 452 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
18 catcocl.z . . . . . 6  |-  ( ph  ->  Z  e.  B )
1918ad2antrr 707 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  B )
20 catcocl.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( X H Y ) )
2120ad3antrrr 711 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X H Y ) )
22 simpllr 736 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
23 simplr 732 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
2422, 23oveq12d 6099 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x H y )  =  ( X H Y ) )
2521, 24eleqtrrd 2513 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x H y ) )
26 catcocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y H Z ) )
2726ad3antrrr 711 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( Y H Z ) )
28 simpr 448 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  z  =  Z )
2923, 28oveq12d 6099 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
y H z )  =  ( Y H Z ) )
3027, 29eleqtrrd 2513 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( y H z ) )
3130adantr 452 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y H z ) )
32 simp-5r 746 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  x  =  X )
33 simp-4r 744 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  y  =  Y )
3432, 33opeq12d 3992 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  <. x ,  y >.  =  <. X ,  Y >. )
35 simpllr 736 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  z  =  Z )
3634, 35oveq12d 6099 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
37 simpr 448 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  g  =  G )
38 simplr 732 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  f  =  F )
3936, 37, 38oveq123d 6102 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
4032, 35oveq12d 6099 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
x H z )  =  ( X H Z ) )
4139, 40eleq12d 2504 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  <->  ( G
( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4231, 41rspcdv 3055 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4325, 42rspcimdv 3053 . . . . 5  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4419, 43rspcimdv 3053 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4517, 44rspcimdv 3053 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4615, 45rspcimdv 3053 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4714, 46mpd 15 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   <.cop 3817   ` cfv 5454  (class class class)co 6081   Basecbs 13469    Hom chom 13540  compcco 13541   Catccat 13889
This theorem is referenced by:  oppccatid  13945  ismon2  13960  isepi2  13967  sectco  13982  monsect  14004  issubc3  14046  fullsubc  14047  idfucl  14078  cofucl  14085  fthsect  14122  fthmon  14124  fuccocl  14161  invfuc  14171  coahom  14225  catcisolem  14261  xpccatid  14285  1stfcl  14294  2ndfcl  14295  prfcl  14300  evlfcllem  14318  evlfcl  14319  curf1cl  14325  curfcl  14329  hofcllem  14355  hofcl  14356  yon12  14362  hofpropd  14364  yonedalem4c  14374
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4338
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-cat 13893
  Copyright terms: Public domain W3C validator