MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcocl Unicode version

Theorem catcocl 13587
Description: Closure of a composition arrow. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
catcocl.b  |-  B  =  ( Base `  C
)
catcocl.h  |-  H  =  (  Hom  `  C
)
catcocl.o  |-  .x.  =  (comp `  C )
catcocl.c  |-  ( ph  ->  C  e.  Cat )
catcocl.x  |-  ( ph  ->  X  e.  B )
catcocl.y  |-  ( ph  ->  Y  e.  B )
catcocl.z  |-  ( ph  ->  Z  e.  B )
catcocl.f  |-  ( ph  ->  F  e.  ( X H Y ) )
catcocl.g  |-  ( ph  ->  G  e.  ( Y H Z ) )
Assertion
Ref Expression
catcocl  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )

Proof of Theorem catcocl
Dummy variables  f 
g  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcocl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
2 catcocl.b . . . . . 6  |-  B  =  ( Base `  C
)
3 catcocl.h . . . . . 6  |-  H  =  (  Hom  `  C
)
4 catcocl.o . . . . . 6  |-  .x.  =  (comp `  C )
52, 3, 4iscat 13574 . . . . 5  |-  ( C  e.  Cat  ->  ( C  e.  Cat  <->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) ) )
65ibi 232 . . . 4  |-  ( C  e.  Cat  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  (
y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
71, 6syl 15 . . 3  |-  ( ph  ->  A. x  e.  B  ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) ) )
8 simpl 443 . . . . . . . . 9  |-  ( ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  ( g
( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z ) )
98ralimi 2618 . . . . . . . 8  |-  ( A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
109ralimi 2618 . . . . . . 7  |-  ( A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1110ralimi 2618 . . . . . 6  |-  ( A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1211ralimi 2618 . . . . 5  |-  ( A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1312adantl 452 . . . 4  |-  ( ( E. g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
1413ralimi 2618 . . 3  |-  ( A. x  e.  B  ( E. g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f )  /\  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( ( g ( <. x ,  y
>.  .x.  z ) f )  e.  ( x H z )  /\  A. w  e.  B  A. v  e.  ( z H w ) ( ( v ( <.
y ,  z >.  .x.  w ) g ) ( <. x ,  y
>.  .x.  w ) f )  =  ( v ( <. x ,  z
>.  .x.  w ) ( g ( <. x ,  y >.  .x.  z
) f ) ) ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
157, 14syl 15 . 2  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z ) )
16 catcocl.x . . 3  |-  ( ph  ->  X  e.  B )
17 catcocl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
1817adantr 451 . . . 4  |-  ( (
ph  /\  x  =  X )  ->  Y  e.  B )
19 catcocl.z . . . . . 6  |-  ( ph  ->  Z  e.  B )
2019ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  Z  e.  B )
21 catcocl.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( X H Y ) )
2221ad3antrrr 710 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( X H Y ) )
23 simpllr 735 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  x  =  X )
24 simplr 731 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  y  =  Y )
2523, 24oveq12d 5876 . . . . . . 7  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
x H y )  =  ( X H Y ) )
2622, 25eleqtrrd 2360 . . . . . 6  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  F  e.  ( x H y ) )
27 catcocl.g . . . . . . . . . 10  |-  ( ph  ->  G  e.  ( Y H Z ) )
2827ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( Y H Z ) )
29 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  z  =  Z )
3024, 29oveq12d 5876 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  (
y H z )  =  ( Y H Z ) )
3128, 30eleqtrrd 2360 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  G  e.  ( y H z ) )
3231adantr 451 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  G  e.  ( y H z ) )
33 simp-5r 745 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  x  =  X )
34 simp-4r 743 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  y  =  Y )
3533, 34opeq12d 3804 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  <. x ,  y >.  =  <. X ,  Y >. )
36 simpllr 735 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  z  =  Z )
3735, 36oveq12d 5876 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  ( <. x ,  y >.  .x.  z )  =  (
<. X ,  Y >.  .x. 
Z ) )
38 simpr 447 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  g  =  G )
39 simplr 731 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  f  =  F )
4037, 38, 39oveq123d 5879 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
g ( <. x ,  y >.  .x.  z
) f )  =  ( G ( <. X ,  Y >.  .x. 
Z ) F ) )
4133, 36oveq12d 5876 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
x H z )  =  ( X H Z ) )
4240, 41eleq12d 2351 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  /\  g  =  G )  ->  (
( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  <->  ( G
( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4332, 42rspcdv 2887 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  /\  z  =  Z )  /\  f  =  F )  ->  ( A. g  e.  (
y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4426, 43rspcimdv 2885 . . . . 5  |-  ( ( ( ( ph  /\  x  =  X )  /\  y  =  Y
)  /\  z  =  Z )  ->  ( A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4520, 44rspcimdv 2885 . . . 4  |-  ( ( ( ph  /\  x  =  X )  /\  y  =  Y )  ->  ( A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4618, 45rspcimdv 2885 . . 3  |-  ( (
ph  /\  x  =  X )  ->  ( A. y  e.  B  A. z  e.  B  A. f  e.  (
x H y ) A. g  e.  ( y H z ) ( g ( <.
x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4716, 46rspcimdv 2885 . 2  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  A. z  e.  B  A. f  e.  ( x H y ) A. g  e.  ( y H z ) ( g (
<. x ,  y >.  .x.  z ) f )  e.  ( x H z )  ->  ( G ( <. X ,  Y >.  .x.  Z ) F )  e.  ( X H Z ) ) )
4815, 47mpd 14 1  |-  ( ph  ->  ( G ( <. X ,  Y >.  .x. 
Z ) F )  e.  ( X H Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   <.cop 3643   ` cfv 5255  (class class class)co 5858   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566
This theorem is referenced by:  oppccatid  13622  ismon2  13637  isepi2  13644  sectco  13659  monsect  13681  issubc3  13723  fullsubc  13724  idfucl  13755  cofucl  13762  fthsect  13799  fthmon  13801  fuccocl  13838  invfuc  13848  coahom  13902  catcisolem  13938  xpccatid  13962  1stfcl  13971  2ndfcl  13972  prfcl  13977  evlfcllem  13995  evlfcl  13996  curf1cl  14002  curfcl  14006  hofcllem  14032  hofcl  14033  yon12  14039  hofpropd  14041  yonedalem4c  14051  yonedalem3b  14053
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-cat 13570
  Copyright terms: Public domain W3C validator