MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcoppccl Unicode version

Theorem catcoppccl 13940
Description: The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
catcoppccl.c  |-  C  =  (CatCat `  U )
catcoppccl.b  |-  B  =  ( Base `  C
)
catcoppccl.o  |-  O  =  (oppCat `  X )
catcoppccl.1  |-  ( ph  ->  U  e. WUni )
catcoppccl.2  |-  ( ph  ->  om  e.  U )
catcoppccl.3  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
catcoppccl  |-  ( ph  ->  O  e.  B )

Proof of Theorem catcoppccl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcoppccl.3 . . . . 5  |-  ( ph  ->  X  e.  B )
2 eqid 2283 . . . . . 6  |-  ( Base `  X )  =  (
Base `  X )
3 eqid 2283 . . . . . 6  |-  (  Hom  `  X )  =  (  Hom  `  X )
4 eqid 2283 . . . . . 6  |-  (comp `  X )  =  (comp `  X )
5 catcoppccl.o . . . . . 6  |-  O  =  (oppCat `  X )
62, 3, 4, 5oppcval 13616 . . . . 5  |-  ( X  e.  B  ->  O  =  ( ( X sSet  <. (  Hom  `  ndx ) , tpos  (  Hom  `  X
) >. ) sSet  <. (comp ` 
ndx ) ,  ( x  e.  ( (
Base `  X )  X.  ( Base `  X
) ) ,  y  e.  ( Base `  X
)  |-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) ) >.
) )
71, 6syl 15 . . . 4  |-  ( ph  ->  O  =  ( ( X sSet  <. (  Hom  `  ndx ) , tpos  (  Hom  `  X
) >. ) sSet  <. (comp ` 
ndx ) ,  ( x  e.  ( (
Base `  X )  X.  ( Base `  X
) ) ,  y  e.  ( Base `  X
)  |-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) ) >.
) )
8 catcoppccl.1 . . . . 5  |-  ( ph  ->  U  e. WUni )
9 inss1 3389 . . . . . . 7  |-  ( U  i^i  Cat )  C_  U
10 catcoppccl.c . . . . . . . . 9  |-  C  =  (CatCat `  U )
11 catcoppccl.b . . . . . . . . 9  |-  B  =  ( Base `  C
)
1210, 11, 8catcbas 13929 . . . . . . . 8  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
131, 12eleqtrd 2359 . . . . . . 7  |-  ( ph  ->  X  e.  ( U  i^i  Cat ) )
149, 13sseldi 3178 . . . . . 6  |-  ( ph  ->  X  e.  U )
15 df-hom 13232 . . . . . . . 8  |-  Hom  = Slot ; 1 4
16 catcoppccl.2 . . . . . . . . 9  |-  ( ph  ->  om  e.  U )
178, 16wunndx 13164 . . . . . . . 8  |-  ( ph  ->  ndx  e.  U )
1815, 8, 17wunstr 13167 . . . . . . 7  |-  ( ph  ->  (  Hom  `  ndx )  e.  U )
1915, 8, 14wunstr 13167 . . . . . . . 8  |-  ( ph  ->  (  Hom  `  X
)  e.  U )
208, 19wuntpos 8356 . . . . . . 7  |-  ( ph  -> tpos  (  Hom  `  X
)  e.  U )
218, 18, 20wunop 8344 . . . . . 6  |-  ( ph  -> 
<. (  Hom  `  ndx ) , tpos  (  Hom  `  X
) >.  e.  U )
228, 14, 21wunsets 13173 . . . . 5  |-  ( ph  ->  ( X sSet  <. (  Hom  `  ndx ) , tpos  (  Hom  `  X
) >. )  e.  U
)
23 df-cco 13233 . . . . . . 7  |- comp  = Slot ; 1 5
2423, 8, 17wunstr 13167 . . . . . 6  |-  ( ph  ->  (comp `  ndx )  e.  U )
25 df-base 13153 . . . . . . . . . 10  |-  Base  = Slot  1
2625, 8, 14wunstr 13167 . . . . . . . . 9  |-  ( ph  ->  ( Base `  X
)  e.  U )
278, 26, 26wunxp 8346 . . . . . . . 8  |-  ( ph  ->  ( ( Base `  X
)  X.  ( Base `  X ) )  e.  U )
288, 27, 26wunxp 8346 . . . . . . 7  |-  ( ph  ->  ( ( ( Base `  X )  X.  ( Base `  X ) )  X.  ( Base `  X
) )  e.  U
)
2923, 8, 14wunstr 13167 . . . . . . . . . . . . . 14  |-  ( ph  ->  (comp `  X )  e.  U )
308, 29wunrn 8351 . . . . . . . . . . . . 13  |-  ( ph  ->  ran  (comp `  X
)  e.  U )
318, 30wununi 8328 . . . . . . . . . . . 12  |-  ( ph  ->  U. ran  (comp `  X )  e.  U
)
328, 31wundm 8350 . . . . . . . . . . 11  |-  ( ph  ->  dom  U. ran  (comp `  X )  e.  U
)
338, 32wuncnv 8352 . . . . . . . . . 10  |-  ( ph  ->  `' dom  U. ran  (comp `  X )  e.  U
)
348wun0 8340 . . . . . . . . . . 11  |-  ( ph  -> 
(/)  e.  U )
358, 34wunsn 8338 . . . . . . . . . 10  |-  ( ph  ->  { (/) }  e.  U
)
368, 33, 35wunun 8332 . . . . . . . . 9  |-  ( ph  ->  ( `' dom  U. ran  (comp `  X )  u.  { (/) } )  e.  U )
378, 31wunrn 8351 . . . . . . . . 9  |-  ( ph  ->  ran  U. ran  (comp `  X )  e.  U
)
388, 36, 37wunxp 8346 . . . . . . . 8  |-  ( ph  ->  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  e.  U )
398, 38wunpw 8329 . . . . . . 7  |-  ( ph  ->  ~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
)  e.  U )
40 tposssxp 6238 . . . . . . . . . . . 12  |- tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  ( ( `' dom  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  u.  { (/)
} )  X.  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )
41 ovssunirn 5884 . . . . . . . . . . . . . . 15  |-  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  U.
ran  (comp `  X )
42 dmss 4878 . . . . . . . . . . . . . . 15  |-  ( (
<. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  U.
ran  (comp `  X )  ->  dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  dom  U.
ran  (comp `  X )
)
4341, 42ax-mp 8 . . . . . . . . . . . . . 14  |-  dom  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  dom  U. ran  (comp `  X )
44 cnvss 4854 . . . . . . . . . . . . . 14  |-  ( dom  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  C_  dom  U.
ran  (comp `  X )  ->  `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  `' dom  U. ran  (comp `  X ) )
45 unss1 3344 . . . . . . . . . . . . . 14  |-  ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  `' dom  U. ran  (comp `  X )  ->  ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  C_  ( `' dom  U. ran  (comp `  X )  u.  { (/)
} ) )
4643, 44, 45mp2b 9 . . . . . . . . . . . . 13  |-  ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  C_  ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )
47 rnss 4907 . . . . . . . . . . . . . 14  |-  ( (
<. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  U.
ran  (comp `  X )  ->  ran  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  ran  U.
ran  (comp `  X )
)
4841, 47ax-mp 8 . . . . . . . . . . . . 13  |-  ran  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  ran  U. ran  (comp `  X )
49 xpss12 4792 . . . . . . . . . . . . 13  |-  ( ( ( `' dom  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  u. 
{ (/) } )  C_  ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  /\  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  C_  ran  U.
ran  (comp `  X )
)  ->  ( ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  X.  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )  C_  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) )
5046, 48, 49mp2an 653 . . . . . . . . . . . 12  |-  ( ( `' dom  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  u.  { (/)
} )  X.  ran  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )  C_  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )
5140, 50sstri 3188 . . . . . . . . . . 11  |- tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  C_  ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )
52 elpw2g 4174 . . . . . . . . . . . 12  |-  ( ( ( `' dom  U. ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  e.  U  ->  (tpos  ( <. y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  e. 
~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
)  <-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  C_  (
( `' dom  U. ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) ) )
5338, 52syl 15 . . . . . . . . . . 11  |-  ( ph  ->  (tpos  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  <-> tpos  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  C_  (
( `' dom  U. ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) ) )
5451, 53mpbiri 224 . . . . . . . . . 10  |-  ( ph  -> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) )
5554ralrimivw 2627 . . . . . . . . 9  |-  ( ph  ->  A. y  e.  (
Base `  X )tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) ) )
5655ralrimivw 2627 . . . . . . . 8  |-  ( ph  ->  A. x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) A. y  e.  ( Base `  X )tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) )  e. 
~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
) )
57 eqid 2283 . . . . . . . . 9  |-  ( x  e.  ( ( Base `  X )  X.  ( Base `  X ) ) ,  y  e.  (
Base `  X )  |-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) )  =  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )
5857fmpt2 6191 . . . . . . . 8  |-  ( A. x  e.  ( ( Base `  X )  X.  ( Base `  X
) ) A. y  e.  ( Base `  X
)tpos  ( <. y ,  ( 2nd `  x
) >. (comp `  X
) ( 1st `  x
) )  e.  ~P ( ( `' dom  U.
ran  (comp `  X )  u.  { (/) } )  X. 
ran  U. ran  (comp `  X ) )  <->  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) ) : ( ( (
Base `  X )  X.  ( Base `  X
) )  X.  ( Base `  X ) ) --> ~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
) )
5956, 58sylib 188 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) ) : ( ( (
Base `  X )  X.  ( Base `  X
) )  X.  ( Base `  X ) ) --> ~P ( ( `' dom  U. ran  (comp `  X )  u.  { (/)
} )  X.  ran  U.
ran  (comp `  X )
) )
608, 28, 39, 59wunf 8349 . . . . . 6  |-  ( ph  ->  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )  e.  U )
618, 24, 60wunop 8344 . . . . 5  |-  ( ph  -> 
<. (comp `  ndx ) ,  ( x  e.  ( ( Base `  X
)  X.  ( Base `  X ) ) ,  y  e.  ( Base `  X )  |-> tpos  ( <.
y ,  ( 2nd `  x ) >. (comp `  X ) ( 1st `  x ) ) )
>.  e.  U )
628, 22, 61wunsets 13173 . . . 4  |-  ( ph  ->  ( ( X sSet  <. (  Hom  `  ndx ) , tpos  (  Hom  `  X
) >. ) sSet  <. (comp ` 
ndx ) ,  ( x  e.  ( (
Base `  X )  X.  ( Base `  X
) ) ,  y  e.  ( Base `  X
)  |-> tpos  ( <. y ,  ( 2nd `  x )
>. (comp `  X )
( 1st `  x
) ) ) >.
)  e.  U )
637, 62eqeltrd 2357 . . 3  |-  ( ph  ->  O  e.  U )
64 inss2 3390 . . . . 5  |-  ( U  i^i  Cat )  C_  Cat
6564, 13sseldi 3178 . . . 4  |-  ( ph  ->  X  e.  Cat )
665oppccat 13625 . . . 4  |-  ( X  e.  Cat  ->  O  e.  Cat )
6765, 66syl 15 . . 3  |-  ( ph  ->  O  e.  Cat )
68 elin 3358 . . 3  |-  ( O  e.  ( U  i^i  Cat )  <->  ( O  e.  U  /\  O  e. 
Cat ) )
6963, 67, 68sylanbrc 645 . 2  |-  ( ph  ->  O  e.  ( U  i^i  Cat ) )
7069, 12eleqtrrd 2360 1  |-  ( ph  ->  O  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   <.cop 3643   U.cuni 3827   omcom 4656    X. cxp 4687   `'ccnv 4688   dom cdm 4689   ran crn 4690   -->wf 5251   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   1stc1st 6120   2ndc2nd 6121  tpos ctpos 6233  WUnicwun 8322   1c1 8738   4c4 9797   5c5 9798  ;cdc 10124   ndxcnx 13145   sSet csts 13146   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566  oppCatcoppc 13614  CatCatccatc 13926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-wun 8324  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-plp 8607  df-ltp 8609  df-enr 8681  df-nr 8682  df-c 8743  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-hom 13232  df-cco 13233  df-cat 13570  df-cid 13571  df-oppc 13615  df-catc 13927
  Copyright terms: Public domain W3C validator