MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catcval Unicode version

Theorem catcval 13928
Description: Value of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catcval.c  |-  C  =  (CatCat `  U )
catcval.u  |-  ( ph  ->  U  e.  V )
catcval.b  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
catcval.h  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x 
Func  y ) ) )
catcval.o  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v )  Func  z
) ,  f  e.  (  Func  `  v ) 
|->  ( g  o.func  f )
) ) )
Assertion
Ref Expression
catcval  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Distinct variable groups:    x, v,
y, z, B    ph, v, x, y, z    v, U, x, y, z    f,
g, v, x, y, z
Allowed substitution hints:    ph( f, g)    B( f, g)    C( x, y, z, v, f, g)    .x. ( x, y, z, v, f, g)    U( f, g)    H( x, y, z, v, f, g)    V( x, y, z, v, f, g)

Proof of Theorem catcval
Dummy variables  u  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 catcval.c . 2  |-  C  =  (CatCat `  U )
2 df-catc 13927 . . . 4  |- CatCat  =  ( u  e.  _V  |->  [_ ( u  i^i  Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. (  Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. } )
32a1i 10 . . 3  |-  ( ph  -> CatCat 
=  ( u  e. 
_V  |->  [_ ( u  i^i 
Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. (  Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. } ) )
4 vex 2791 . . . . . 6  |-  u  e. 
_V
54inex1 4155 . . . . 5  |-  ( u  i^i  Cat )  e. 
_V
65a1i 10 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Cat )  e.  _V )
7 simpr 447 . . . . . 6  |-  ( (
ph  /\  u  =  U )  ->  u  =  U )
87ineq1d 3369 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Cat )  =  ( U  i^i  Cat ) )
9 catcval.b . . . . . 6  |-  ( ph  ->  B  =  ( U  i^i  Cat ) )
109adantr 451 . . . . 5  |-  ( (
ph  /\  u  =  U )  ->  B  =  ( U  i^i  Cat ) )
118, 10eqtr4d 2318 . . . 4  |-  ( (
ph  /\  u  =  U )  ->  (
u  i^i  Cat )  =  B )
12 simpr 447 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  b  =  B )
1312opeq2d 3803 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  B >. )
14 eqidd 2284 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  Func  y )  =  ( x  Func  y ) )
1512, 12, 14mpt2eq123dv 5910 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x  Func  y )
)  =  ( x  e.  B ,  y  e.  B  |->  ( x 
Func  y ) ) )
16 catcval.h . . . . . . . 8  |-  ( ph  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x 
Func  y ) ) )
1716ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  H  =  ( x  e.  B ,  y  e.  B  |->  ( x  Func  y ) ) )
1815, 17eqtr4d 2318 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
x  e.  b ,  y  e.  b  |->  ( x  Func  y )
)  =  H )
1918opeq2d 3803 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. (  Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  Func  y
) ) >.  =  <. (  Hom  `  ndx ) ,  H >. )
2012, 12xpeq12d 4714 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
b  X.  b )  =  ( B  X.  B ) )
21 eqidd 2284 . . . . . . . 8  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) )  =  ( g  e.  ( ( 2nd `  v
)  Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
2220, 12, 21mpt2eq123dv 5910 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )  =  ( v  e.  ( B  X.  B
) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v
)  Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) ) )
23 catcval.o . . . . . . . 8  |-  ( ph  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v )  Func  z
) ,  f  e.  (  Func  `  v ) 
|->  ( g  o.func  f )
) ) )
2423ad2antrr 706 . . . . . . 7  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  .x.  =  ( v  e.  ( B  X.  B ) ,  z  e.  B  |->  ( g  e.  ( ( 2nd `  v
)  Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) ) )
2522, 24eqtr4d 2318 . . . . . 6  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  (
v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )  =  .x.  )
2625opeq2d 3803 . . . . 5  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  <. (comp ` 
ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>.  =  <. (comp `  ndx ) ,  .x.  >. )
2713, 19, 26tpeq123d 3721 . . . 4  |-  ( ( ( ph  /\  u  =  U )  /\  b  =  B )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. (  Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b 
|->  ( x  Func  y
) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. }  =  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
286, 11, 27csbied2 3124 . . 3  |-  ( (
ph  /\  u  =  U )  ->  [_ (
u  i^i  Cat )  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. (  Hom  `  ndx ) ,  ( x  e.  b ,  y  e.  b  |->  ( x  Func  y ) ) >. ,  <. (comp `  ndx ) ,  ( v  e.  ( b  X.  b ) ,  z  e.  b  |->  ( g  e.  ( ( 2nd `  v ) 
Func  z ) ,  f  e.  (  Func  `  v )  |->  ( g  o.func  f ) ) )
>. }  =  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
29 catcval.u . . . 4  |-  ( ph  ->  U  e.  V )
30 elex 2796 . . . 4  |-  ( U  e.  V  ->  U  e.  _V )
3129, 30syl 15 . . 3  |-  ( ph  ->  U  e.  _V )
32 tpex 4519 . . . 4  |-  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. }  e.  _V
3332a1i 10 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  B >. , 
<. (  Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. }  e.  _V )
343, 28, 31, 33fvmptd 5606 . 2  |-  ( ph  ->  (CatCat `  U )  =  { <. ( Base `  ndx ) ,  B >. , 
<. (  Hom  `  ndx ) ,  H >. , 
<. (comp `  ndx ) , 
.x.  >. } )
351, 34syl5eq 2327 1  |-  ( ph  ->  C  =  { <. (
Base `  ndx ) ,  B >. ,  <. (  Hom  `  ndx ) ,  H >. ,  <. (comp ` 
ndx ) ,  .x.  >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   [_csb 3081    i^i cin 3151   {ctp 3642   <.cop 3643    e. cmpt 4077    X. cxp 4687   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   2ndc2nd 6121   ndxcnx 13145   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566    Func cfunc 13728    o.func ccofu 13730  CatCatccatc 13926
This theorem is referenced by:  catcbas  13929  catchomfval  13930  catccofval  13932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-oprab 5862  df-mpt2 5863  df-catc 13927
  Copyright terms: Public domain W3C validator