MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catidd Structured version   Unicode version

Theorem catidd 13907
Description: Deduce the identity arrow in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
catidd.b  |-  ( ph  ->  B  =  ( Base `  C ) )
catidd.h  |-  ( ph  ->  H  =  (  Hom  `  C ) )
catidd.o  |-  ( ph  ->  .x.  =  (comp `  C ) )
catidd.c  |-  ( ph  ->  C  e.  Cat )
catidd.1  |-  ( (
ph  /\  x  e.  B )  ->  .1.  e.  ( x H x ) )
catidd.2  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  f  e.  ( y H x ) ) )  -> 
(  .1.  ( <.
y ,  x >.  .x.  x ) f )  =  f )
catidd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  f  e.  ( x H y ) ) )  -> 
( f ( <.
x ,  x >.  .x.  y )  .1.  )  =  f )
Assertion
Ref Expression
catidd  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  B  |->  .1.  )
)
Distinct variable groups:    y, f,  .1.    x, B    x, f, C, y    ph, f, x, y
Allowed substitution hints:    B( y, f)    .x. ( x, y, f)    .1. ( x)    H( x, y, f)

Proof of Theorem catidd
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 catidd.2 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  f  e.  ( y H x ) ) )  -> 
(  .1.  ( <.
y ,  x >.  .x.  x ) f )  =  f )
21ex 425 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  f  e.  ( y H x ) )  ->  (  .1.  ( <. y ,  x >.  .x.  x ) f )  =  f ) )
3 catidd.b . . . . . . . . . . . 12  |-  ( ph  ->  B  =  ( Base `  C ) )
43eleq2d 2505 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  B  <->  x  e.  ( Base `  C
) ) )
53eleq2d 2505 . . . . . . . . . . 11  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  C
) ) )
6 catidd.h . . . . . . . . . . . . 13  |-  ( ph  ->  H  =  (  Hom  `  C ) )
76oveqd 6100 . . . . . . . . . . . 12  |-  ( ph  ->  ( y H x )  =  ( y (  Hom  `  C
) x ) )
87eleq2d 2505 . . . . . . . . . . 11  |-  ( ph  ->  ( f  e.  ( y H x )  <-> 
f  e.  ( y (  Hom  `  C
) x ) ) )
94, 5, 83anbi123d 1255 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  f  e.  ( y H x ) )  <->  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
y (  Hom  `  C
) x ) ) ) )
10 catidd.o . . . . . . . . . . . . 13  |-  ( ph  ->  .x.  =  (comp `  C ) )
1110oveqd 6100 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. y ,  x >.  .x.  x )  =  ( <. y ,  x >. (comp `  C )
x ) )
1211oveqd 6100 . . . . . . . . . . 11  |-  ( ph  ->  (  .1.  ( <.
y ,  x >.  .x.  x ) f )  =  (  .1.  ( <. y ,  x >. (comp `  C ) x ) f ) )
1312eqeq1d 2446 . . . . . . . . . 10  |-  ( ph  ->  ( (  .1.  ( <. y ,  x >.  .x.  x ) f )  =  f  <->  (  .1.  ( <. y ,  x >. (comp `  C )
x ) f )  =  f ) )
142, 9, 133imtr3d 260 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
y (  Hom  `  C
) x ) )  ->  (  .1.  ( <. y ,  x >. (comp `  C ) x ) f )  =  f ) )
15143expd 1171 . . . . . . . 8  |-  ( ph  ->  ( x  e.  (
Base `  C )  ->  ( y  e.  (
Base `  C )  ->  ( f  e.  ( y (  Hom  `  C
) x )  -> 
(  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f ) ) ) )
1615imp41 578 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( Base `  C ) )  /\  y  e.  ( Base `  C ) )  /\  f  e.  ( y
(  Hom  `  C ) x ) )  -> 
(  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f )
1716ralrimiva 2791 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  C
) )  ->  A. f  e.  ( y (  Hom  `  C ) x ) (  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f )
18 catidd.3 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B  /\  f  e.  ( x H y ) ) )  -> 
( f ( <.
x ,  x >.  .x.  y )  .1.  )  =  f )
1918ex 425 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  f  e.  ( x H y ) )  ->  (
f ( <. x ,  x >.  .x.  y )  .1.  )  =  f ) )
206oveqd 6100 . . . . . . . . . . . 12  |-  ( ph  ->  ( x H y )  =  ( x (  Hom  `  C
) y ) )
2120eleq2d 2505 . . . . . . . . . . 11  |-  ( ph  ->  ( f  e.  ( x H y )  <-> 
f  e.  ( x (  Hom  `  C
) y ) ) )
224, 5, 213anbi123d 1255 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B  /\  f  e.  ( x H y ) )  <->  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x (  Hom  `  C
) y ) ) ) )
2310oveqd 6100 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. x ,  x >.  .x.  y )  =  ( <. x ,  x >. (comp `  C )
y ) )
2423oveqd 6100 . . . . . . . . . . 11  |-  ( ph  ->  ( f ( <.
x ,  x >.  .x.  y )  .1.  )  =  ( f (
<. x ,  x >. (comp `  C ) y )  .1.  ) )
2524eqeq1d 2446 . . . . . . . . . 10  |-  ( ph  ->  ( ( f (
<. x ,  x >.  .x.  y )  .1.  )  =  f  <->  ( f (
<. x ,  x >. (comp `  C ) y )  .1.  )  =  f ) )
2619, 22, 253imtr3d 260 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  C )  /\  f  e.  (
x (  Hom  `  C
) y ) )  ->  ( f (
<. x ,  x >. (comp `  C ) y )  .1.  )  =  f ) )
27263expd 1171 . . . . . . . 8  |-  ( ph  ->  ( x  e.  (
Base `  C )  ->  ( y  e.  (
Base `  C )  ->  ( f  e.  ( x (  Hom  `  C
) y )  -> 
( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f ) ) ) )
2827imp41 578 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  ( Base `  C ) )  /\  y  e.  ( Base `  C ) )  /\  f  e.  ( x
(  Hom  `  C ) y ) )  -> 
( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f )
2928ralrimiva 2791 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  C
) )  ->  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f )
3017, 29jca 520 . . . . 5  |-  ( ( ( ph  /\  x  e.  ( Base `  C
) )  /\  y  e.  ( Base `  C
) )  ->  ( A. f  e.  (
y (  Hom  `  C
) x ) (  .1.  ( <. y ,  x >. (comp `  C
) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C
) y ) ( f ( <. x ,  x >. (comp `  C
) y )  .1.  )  =  f ) )
3130ralrimiva 2791 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  A. y  e.  ( Base `  C
) ( A. f  e.  ( y (  Hom  `  C ) x ) (  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f ) )
32 catidd.1 . . . . . . . 8  |-  ( (
ph  /\  x  e.  B )  ->  .1.  e.  ( x H x ) )
3332ex 425 . . . . . . 7  |-  ( ph  ->  ( x  e.  B  ->  .1.  e.  ( x H x ) ) )
346oveqd 6100 . . . . . . . 8  |-  ( ph  ->  ( x H x )  =  ( x (  Hom  `  C
) x ) )
3534eleq2d 2505 . . . . . . 7  |-  ( ph  ->  (  .1.  e.  ( x H x )  <-> 
.1.  e.  ( x
(  Hom  `  C ) x ) ) )
3633, 4, 353imtr3d 260 . . . . . 6  |-  ( ph  ->  ( x  e.  (
Base `  C )  ->  .1.  e.  ( x (  Hom  `  C
) x ) ) )
3736imp 420 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  .1.  e.  ( x (  Hom  `  C ) x ) )
38 eqid 2438 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
39 eqid 2438 . . . . . 6  |-  (  Hom  `  C )  =  (  Hom  `  C )
40 eqid 2438 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
41 catidd.c . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
4241adantr 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  C  e.  Cat )
43 simpr 449 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  x  e.  ( Base `  C )
)
4438, 39, 40, 42, 43catideu 13902 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  E! g  e.  ( x (  Hom  `  C ) x ) A. y  e.  (
Base `  C )
( A. f  e.  ( y (  Hom  `  C ) x ) ( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f ) )
45 oveq1 6090 . . . . . . . . . 10  |-  ( g  =  .1.  ->  (
g ( <. y ,  x >. (comp `  C
) x ) f )  =  (  .1.  ( <. y ,  x >. (comp `  C )
x ) f ) )
4645eqeq1d 2446 . . . . . . . . 9  |-  ( g  =  .1.  ->  (
( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  <-> 
(  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f ) )
4746ralbidv 2727 . . . . . . . 8  |-  ( g  =  .1.  ->  ( A. f  e.  (
y (  Hom  `  C
) x ) ( g ( <. y ,  x >. (comp `  C
) x ) f )  =  f  <->  A. f  e.  ( y (  Hom  `  C ) x ) (  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f ) )
48 oveq2 6091 . . . . . . . . . 10  |-  ( g  =  .1.  ->  (
f ( <. x ,  x >. (comp `  C
) y ) g )  =  ( f ( <. x ,  x >. (comp `  C )
y )  .1.  )
)
4948eqeq1d 2446 . . . . . . . . 9  |-  ( g  =  .1.  ->  (
( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f  <-> 
( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f ) )
5049ralbidv 2727 . . . . . . . 8  |-  ( g  =  .1.  ->  ( A. f  e.  (
x (  Hom  `  C
) y ) ( f ( <. x ,  x >. (comp `  C
) y ) g )  =  f  <->  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f ) )
5147, 50anbi12d 693 . . . . . . 7  |-  ( g  =  .1.  ->  (
( A. f  e.  ( y (  Hom  `  C ) x ) ( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f )  <->  ( A. f  e.  ( y (  Hom  `  C ) x ) (  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f ) ) )
5251ralbidv 2727 . . . . . 6  |-  ( g  =  .1.  ->  ( A. y  e.  ( Base `  C ) ( A. f  e.  ( y (  Hom  `  C
) x ) ( g ( <. y ,  x >. (comp `  C
) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C
) y ) ( f ( <. x ,  x >. (comp `  C
) y ) g )  =  f )  <->  A. y  e.  ( Base `  C ) ( A. f  e.  ( y (  Hom  `  C
) x ) (  .1.  ( <. y ,  x >. (comp `  C
) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C
) y ) ( f ( <. x ,  x >. (comp `  C
) y )  .1.  )  =  f ) ) )
5352riota2 6574 . . . . 5  |-  ( (  .1.  e.  ( x (  Hom  `  C
) x )  /\  E! g  e.  (
x (  Hom  `  C
) x ) A. y  e.  ( Base `  C ) ( A. f  e.  ( y
(  Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
(  Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) )  ->  ( A. y  e.  ( Base `  C
) ( A. f  e.  ( y (  Hom  `  C ) x ) (  .1.  ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y )  .1.  )  =  f )  <->  ( iota_ g  e.  ( x (  Hom  `  C ) x ) A. y  e.  (
Base `  C )
( A. f  e.  ( y (  Hom  `  C ) x ) ( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f ) )  =  .1.  ) )
5437, 44, 53syl2anc 644 . . . 4  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( A. y  e.  ( Base `  C ) ( A. f  e.  ( y
(  Hom  `  C ) x ) (  .1.  ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
(  Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y )  .1.  )  =  f )  <->  ( iota_ g  e.  ( x (  Hom  `  C )
x ) A. y  e.  ( Base `  C
) ( A. f  e.  ( y (  Hom  `  C ) x ) ( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f ) )  =  .1.  ) )
5531, 54mpbid 203 . . 3  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( iota_ g  e.  ( x (  Hom  `  C )
x ) A. y  e.  ( Base `  C
) ( A. f  e.  ( y (  Hom  `  C ) x ) ( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f ) )  =  .1.  )
5655mpteq2dva 4297 . 2  |-  ( ph  ->  ( x  e.  (
Base `  C )  |->  ( iota_ g  e.  ( x (  Hom  `  C
) x ) A. y  e.  ( Base `  C ) ( A. f  e.  ( y
(  Hom  `  C ) x ) ( g ( <. y ,  x >. (comp `  C )
x ) f )  =  f  /\  A. f  e.  ( x
(  Hom  `  C ) y ) ( f ( <. x ,  x >. (comp `  C )
y ) g )  =  f ) ) )  =  ( x  e.  ( Base `  C
)  |->  .1.  ) )
57 eqid 2438 . . 3  |-  ( Id
`  C )  =  ( Id `  C
)
5838, 39, 40, 41, 57cidfval 13903 . 2  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  ( Base `  C
)  |->  ( iota_ g  e.  ( x (  Hom  `  C ) x ) A. y  e.  (
Base `  C )
( A. f  e.  ( y (  Hom  `  C ) x ) ( g ( <.
y ,  x >. (comp `  C ) x ) f )  =  f  /\  A. f  e.  ( x (  Hom  `  C ) y ) ( f ( <.
x ,  x >. (comp `  C ) y ) g )  =  f ) ) ) )
593mpteq1d 4292 . 2  |-  ( ph  ->  ( x  e.  B  |->  .1.  )  =  ( x  e.  ( Base `  C )  |->  .1.  )
)
6056, 58, 593eqtr4d 2480 1  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  B  |->  .1.  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E!wreu 2709   <.cop 3819    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   iota_crio 6544   Basecbs 13471    Hom chom 13542  compcco 13543   Catccat 13891   Idccid 13892
This theorem is referenced by:  iscatd2  13908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-riota 6551  df-cat 13895  df-cid 13896
  Copyright terms: Public domain W3C validator