MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cats1cld Structured version   Unicode version

Theorem cats1cld 11821
Description: Closure of concatenation with a singleton. (Contributed by Mario Carneiro, 26-Feb-2016.)
Hypotheses
Ref Expression
cats1cld.1  |-  T  =  ( S concat  <" X "> )
cats1cld.2  |-  ( ph  ->  S  e. Word  A )
cats1cld.3  |-  ( ph  ->  X  e.  A )
Assertion
Ref Expression
cats1cld  |-  ( ph  ->  T  e. Word  A )

Proof of Theorem cats1cld
StepHypRef Expression
1 cats1cld.1 . 2  |-  T  =  ( S concat  <" X "> )
2 cats1cld.2 . . 3  |-  ( ph  ->  S  e. Word  A )
3 cats1cld.3 . . . 4  |-  ( ph  ->  X  e.  A )
43s1cld 11758 . . 3  |-  ( ph  ->  <" X ">  e. Word  A )
5 ccatcl 11745 . . 3  |-  ( ( S  e. Word  A  /\  <" X ">  e. Word  A )  ->  ( S concat  <" X "> )  e. Word  A )
62, 4, 5syl2anc 644 . 2  |-  ( ph  ->  ( S concat  <" X "> )  e. Word  A
)
71, 6syl5eqel 2522 1  |-  ( ph  ->  T  e. Word  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726  (class class class)co 6083  Word cword 11719   concat cconcat 11720   <"cs1 11721
This theorem is referenced by:  s2cld  11835  s3cld  11836  s4cld  11837  s5cld  11838  s6cld  11839  s7cld  11840  s8cld  11841  pgpfaclem1  15641  konigsberg  21711
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-fzo 11138  df-hash 11621  df-word 11725  df-concat 11726  df-s1 11727
  Copyright terms: Public domain W3C validator