MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubnd Unicode version

Theorem caubnd 12082
Description: A Cauchy sequence of complex numbers is bounded. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caubnd  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )
Distinct variable groups:    j, k, x, y, F    j, M, k, x    j, Z, k, x, y
Allowed substitution hint:    M( y)

Proof of Theorem caubnd
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 abscl 12003 . . . 4  |-  ( ( F `  k )  e.  CC  ->  ( abs `  ( F `  k ) )  e.  RR )
21ralimi 2717 . . 3  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  A. k  e.  Z  ( abs `  ( F `  k
) )  e.  RR )
3 cau3.1 . . . . . . 7  |-  Z  =  ( ZZ>= `  M )
43r19.29uz 12074 . . . . . 6  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
54ex 424 . . . . 5  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
65ralimdv 2721 . . . 4  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
73caubnd2 12081 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. z  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)
86, 7syl6 31 . . 3  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. z  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
) )
9 fzssuz 11018 . . . . . . . 8  |-  ( M ... j )  C_  ( ZZ>= `  M )
109, 3sseqtr4i 3317 . . . . . . 7  |-  ( M ... j )  C_  Z
11 ssralv 3343 . . . . . . 7  |-  ( ( M ... j ) 
C_  Z  ->  ( A. k  e.  Z  ( abs `  ( F `
 k ) )  e.  RR  ->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  e.  RR ) )
1210, 11ax-mp 8 . . . . . 6  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  e.  RR )
13 fzfi 11231 . . . . . . . 8  |-  ( M ... j )  e. 
Fin
14 fimaxre3 9882 . . . . . . . 8  |-  ( ( ( M ... j
)  e.  Fin  /\  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  e.  RR )  ->  E. x  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <_  x )
1513, 14mpan 652 . . . . . . 7  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  e.  RR  ->  E. x  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <_  x )
16 peano2re 9164 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
1716adantl 453 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( x  +  1 )  e.  RR )
18 ltp1 9773 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR  ->  x  <  ( x  +  1 ) )
1918adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  x  <  ( x  +  1 ) )
2016adantl 453 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( x  +  1 )  e.  RR )
21 lelttr 9091 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR  /\  (
x  +  1 )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  <_  x  /\  x  <  ( x  +  1 ) )  ->  ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
2220, 21mpd3an3 1280 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( ( ( abs `  ( F `  k
) )  <_  x  /\  x  <  ( x  +  1 ) )  ->  ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
2319, 22mpan2d 656 . . . . . . . . . . . . 13  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( ( abs `  ( F `  k )
)  <_  x  ->  ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) )
2423expcom 425 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( abs `  ( F `  k )
)  e.  RR  ->  ( ( abs `  ( F `  k )
)  <_  x  ->  ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) ) )
2524ralimdv 2721 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  e.  RR  ->  A. k  e.  ( M ... j
) ( ( abs `  ( F `  k
) )  <_  x  ->  ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) ) )
2625impcom 420 . . . . . . . . . 10  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  A. k  e.  ( M ... j ) ( ( abs `  ( F `  k )
)  <_  x  ->  ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) )
27 ralim 2713 . . . . . . . . . 10  |-  ( A. k  e.  ( M ... j ) ( ( abs `  ( F `
 k ) )  <_  x  ->  ( abs `  ( F `  k ) )  < 
( x  +  1 ) )  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <_  x  ->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
2826, 27syl 16 . . . . . . . . 9  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <_  x  ->  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) ) )
29 breq2 4150 . . . . . . . . . . 11  |-  ( w  =  ( x  + 
1 )  ->  (
( abs `  ( F `  k )
)  <  w  <->  ( abs `  ( F `  k
) )  <  (
x  +  1 ) ) )
3029ralbidv 2662 . . . . . . . . . 10  |-  ( w  =  ( x  + 
1 )  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w  <->  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  ( x  +  1 ) ) )
3130rspcev 2988 . . . . . . . . 9  |-  ( ( ( x  +  1 )  e.  RR  /\  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  ( x  + 
1 ) )  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w )
3217, 28, 31ee12an 1369 . . . . . . . 8  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  e.  RR  /\  x  e.  RR )  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <_  x  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w
) )
3332rexlimdva 2766 . . . . . . 7  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  e.  RR  ->  ( E. x  e.  RR  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <_  x  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w
) )
3415, 33mpd 15 . . . . . 6  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  e.  RR  ->  E. w  e.  RR  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w )
3512, 34syl 16 . . . . 5  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  E. w  e.  RR  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w )
36 max1 10698 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  w  <_  if (
w  <_  z , 
z ,  w ) )
37363adant3 977 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  w  <_  if ( w  <_ 
z ,  z ,  w ) )
38 simp3 959 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  ( abs `  ( F `  k ) )  e.  RR )
39 simp1 957 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  w  e.  RR )
40 ifcl 3711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  RR  /\  w  e.  RR )  ->  if ( w  <_ 
z ,  z ,  w )  e.  RR )
4140ancoms 440 . . . . . . . . . . . . . . . . . . 19  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  if ( w  <_ 
z ,  z ,  w )  e.  RR )
42413adant3 977 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  if ( w  <_  z ,  z ,  w )  e.  RR )
43 ltletr 9092 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  w  e.  RR  /\  if ( w  <_  z ,  z ,  w )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  <  w  /\  w  <_  if ( w  <_  z , 
z ,  w ) )  ->  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
4438, 39, 42, 43syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  <  w  /\  w  <_  if ( w  <_  z ,  z ,  w ) )  ->  ( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) )
4537, 44mpan2d 656 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( abs `  ( F `  k )
)  <  w  ->  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) )
46 max2 10700 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  z  <_  if (
w  <_  z , 
z ,  w ) )
47463adant3 977 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  z  <_  if ( w  <_ 
z ,  z ,  w ) )
48 simp2 958 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  z  e.  RR )
49 ltletr 9092 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs `  ( F `  k )
)  e.  RR  /\  z  e.  RR  /\  if ( w  <_  z ,  z ,  w )  e.  RR )  -> 
( ( ( abs `  ( F `  k
) )  <  z  /\  z  <_  if ( w  <_  z , 
z ,  w ) )  ->  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
5038, 48, 42, 49syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  <  z  /\  z  <_  if ( w  <_  z ,  z ,  w ) )  ->  ( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) )
5147, 50mpan2d 656 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( abs `  ( F `  k )
)  <  z  ->  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) )
5245, 51jaod 370 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR  /\  z  e.  RR  /\  ( abs `  ( F `  k ) )  e.  RR )  ->  (
( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) )
53523expia 1155 . . . . . . . . . . . . . 14  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( ( abs `  ( F `  k )
)  e.  RR  ->  ( ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) ) )
5453ralimdv 2721 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  A. k  e.  Z  ( ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) ) ) )
55 ralim 2713 . . . . . . . . . . . . 13  |-  ( A. k  e.  Z  (
( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  -> 
( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w ) )  ->  ( A. k  e.  Z  (
( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) )
5654, 55syl6 31 . . . . . . . . . . . 12  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) ) ) )
57 breq2 4150 . . . . . . . . . . . . . . . 16  |-  ( y  =  if ( w  <_  z ,  z ,  w )  -> 
( ( abs `  ( F `  k )
)  <  y  <->  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
5857ralbidv 2662 . . . . . . . . . . . . . . 15  |-  ( y  =  if ( w  <_  z ,  z ,  w )  -> 
( A. k  e.  Z  ( abs `  ( F `  k )
)  <  y  <->  A. k  e.  Z  ( abs `  ( F `  k
) )  <  if ( w  <_  z ,  z ,  w ) ) )
5958rspcev 2988 . . . . . . . . . . . . . 14  |-  ( ( if ( w  <_ 
z ,  z ,  w )  e.  RR  /\ 
A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w ) )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )
6059ex 424 . . . . . . . . . . . . 13  |-  ( if ( w  <_  z ,  z ,  w
)  e.  RR  ->  ( A. k  e.  Z  ( abs `  ( F `
 k ) )  <  if ( w  <_  z ,  z ,  w )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) )
6141, 60syl 16 . . . . . . . . . . . 12  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  <  if (
w  <_  z , 
z ,  w )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) )
6256, 61syl6d 66 . . . . . . . . . . 11  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) ) )
63 uzssz 10430 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ZZ>= `  M )  C_  ZZ
643, 63eqsstri 3314 . . . . . . . . . . . . . . . . . . . . 21  |-  Z  C_  ZZ
6564sseli 3280 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  Z  ->  k  e.  ZZ )
6664sseli 3280 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  e.  Z  ->  j  e.  ZZ )
67 uztric 10432 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( k  e.  ZZ  /\  j  e.  ZZ )  ->  ( j  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  j ) ) )
6865, 66, 67syl2anr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  e.  (
ZZ>= `  k )  \/  k  e.  ( ZZ>= `  j ) ) )
69 simpr 448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  k  e.  Z )
7069, 3syl6eleq 2470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  k  e.  ( ZZ>= `  M ) )
71 elfzuzb 10978 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( k  e.  ( M ... j )  <->  ( k  e.  ( ZZ>= `  M )  /\  j  e.  ( ZZ>=
`  k ) ) )
7271baib 872 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( k  e.  ( M ... j
)  <->  j  e.  (
ZZ>= `  k ) ) )
7370, 72syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  ( M ... j )  <-> 
j  e.  ( ZZ>= `  k ) ) )
7473orbi1d 684 . . . . . . . . . . . . . . . . . . 19  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( M ... j
)  \/  k  e.  ( ZZ>= `  j )
)  <->  ( j  e.  ( ZZ>= `  k )  \/  k  e.  ( ZZ>=
`  j ) ) ) )
7568, 74mpbird 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  ( M ... j )  \/  k  e.  (
ZZ>= `  j ) ) )
7675ex 424 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( k  e.  ( M ... j )  \/  k  e.  (
ZZ>= `  j ) ) ) )
77 pm3.48 807 . . . . . . . . . . . . . . . . 17  |-  ( ( ( k  e.  ( M ... j )  ->  ( abs `  ( F `  k )
)  <  w )  /\  ( k  e.  (
ZZ>= `  j )  -> 
( abs `  ( F `  k )
)  <  z )
)  ->  ( (
k  e.  ( M ... j )  \/  k  e.  ( ZZ>= `  j ) )  -> 
( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z ) ) )
7876, 77syl9 68 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  (
( ( k  e.  ( M ... j
)  ->  ( abs `  ( F `  k
) )  <  w
)  /\  ( k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k )
)  <  z )
)  ->  ( k  e.  Z  ->  ( ( abs `  ( F `
 k ) )  <  w  \/  ( abs `  ( F `  k ) )  < 
z ) ) ) )
7978alimdv 1628 . . . . . . . . . . . . . . 15  |-  ( j  e.  Z  ->  ( A. k ( ( k  e.  ( M ... j )  ->  ( abs `  ( F `  k ) )  < 
w )  /\  (
k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k ) )  < 
z ) )  ->  A. k ( k  e.  Z  ->  ( ( abs `  ( F `  k ) )  < 
w  \/  ( abs `  ( F `  k
) )  <  z
) ) ) )
80 df-ral 2647 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w  <->  A. k ( k  e.  ( M ... j
)  ->  ( abs `  ( F `  k
) )  <  w
) )
81 df-ral 2647 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z  <->  A. k ( k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k )
)  <  z )
)
8280, 81anbi12i 679 . . . . . . . . . . . . . . . 16  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  <->  ( A. k
( k  e.  ( M ... j )  ->  ( abs `  ( F `  k )
)  <  w )  /\  A. k ( k  e.  ( ZZ>= `  j
)  ->  ( abs `  ( F `  k
) )  <  z
) ) )
83 19.26 1600 . . . . . . . . . . . . . . . 16  |-  ( A. k ( ( k  e.  ( M ... j )  ->  ( abs `  ( F `  k ) )  < 
w )  /\  (
k  e.  ( ZZ>= `  j )  ->  ( abs `  ( F `  k ) )  < 
z ) )  <->  ( A. k ( k  e.  ( M ... j
)  ->  ( abs `  ( F `  k
) )  <  w
)  /\  A. k
( k  e.  (
ZZ>= `  j )  -> 
( abs `  ( F `  k )
)  <  z )
) )
8482, 83bitr4i 244 . . . . . . . . . . . . . . 15  |-  ( ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  <->  A. k ( ( k  e.  ( M ... j )  -> 
( abs `  ( F `  k )
)  <  w )  /\  ( k  e.  (
ZZ>= `  j )  -> 
( abs `  ( F `  k )
)  <  z )
) )
85 df-ral 2647 . . . . . . . . . . . . . . 15  |-  ( A. k  e.  Z  (
( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  <->  A. k
( k  e.  Z  ->  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z ) ) )
8679, 84, 853imtr4g 262 . . . . . . . . . . . . . 14  |-  ( j  e.  Z  ->  (
( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  ->  A. k  e.  Z  ( ( abs `  ( F `  k ) )  < 
w  \/  ( abs `  ( F `  k
) )  <  z
) ) )
87863impib 1151 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  A. k  e.  ( M ... j ) ( abs `  ( F `
 k ) )  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  ->  A. k  e.  Z  ( ( abs `  ( F `  k ) )  < 
w  \/  ( abs `  ( F `  k
) )  <  z
) )
8887imim1i 56 . . . . . . . . . . . 12  |-  ( ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )  -> 
( ( j  e.  Z  /\  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  /\  A. k  e.  ( ZZ>= `  j ) ( abs `  ( F `  k
) )  <  z
)  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
)
89883expd 1170 . . . . . . . . . . 11  |-  ( ( A. k  e.  Z  ( ( abs `  ( F `  k )
)  <  w  \/  ( abs `  ( F `
 k ) )  <  z )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )  -> 
( j  e.  Z  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) )
9062, 89syl6 31 . . . . . . . . . 10  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( j  e.  Z  -> 
( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9190com23 74 . . . . . . . . 9  |-  ( ( w  e.  RR  /\  z  e.  RR )  ->  ( j  e.  Z  ->  ( A. k  e.  Z  ( abs `  ( F `  k )
)  e.  RR  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9291expimpd 587 . . . . . . . 8  |-  ( w  e.  RR  ->  (
( z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  Z  ( abs `  ( F `  k
) )  e.  RR  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9392com3r 75 . . . . . . 7  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( w  e.  RR  ->  ( (
z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( A. k  e.  (
ZZ>= `  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9493com34 79 . . . . . 6  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( w  e.  RR  ->  ( A. k  e.  ( M ... j ) ( abs `  ( F `  k
) )  <  w  ->  ( ( z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( F `
 k ) )  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k )
)  <  y )
) ) ) )
9594rexlimdv 2765 . . . . 5  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( E. w  e.  RR  A. k  e.  ( M ... j
) ( abs `  ( F `  k )
)  <  w  ->  ( ( z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  < 
y ) ) ) )
9635, 95mpd 15 . . . 4  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( (
z  e.  RR  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  < 
y ) ) )
9796rexlimdvv 2772 . . 3  |-  ( A. k  e.  Z  ( abs `  ( F `  k ) )  e.  RR  ->  ( E. z  e.  RR  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  ( F `  k )
)  <  z  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `  k ) )  < 
y ) )
982, 8, 97sylsyld 54 . 2  |-  ( A. k  e.  Z  ( F `  k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y ) )
9998imp 419 1  |-  ( ( A. k  e.  Z  ( F `  k )  e.  CC  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. y  e.  RR  A. k  e.  Z  ( abs `  ( F `
 k ) )  <  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643    C_ wss 3256   ifcif 3675   class class class wbr 4146   ` cfv 5387  (class class class)co 6013   Fincfn 7038   CCcc 8914   RRcr 8915   1c1 8917    + caddc 8919    < clt 9046    <_ cle 9047    - cmin 9216   ZZcz 10207   ZZ>=cuz 10413   RR+crp 10537   ...cfz 10968   abscabs 11959
This theorem is referenced by:  climbdd  12385
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-fz 10969  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961
  Copyright terms: Public domain W3C validator