MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvg Unicode version

Theorem caucvg 12151
Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of [Gleason] p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006.) (Proof shortened by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvg.1  |-  Z  =  ( ZZ>= `  M )
caucvg.2  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
caucvg.3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
caucvg.4  |-  ( ph  ->  F  e.  V )
Assertion
Ref Expression
caucvg  |-  ( ph  ->  F  e.  dom  ~~>  )
Distinct variable groups:    j, k, x, F    j, M, k, x    ph, j, k, x   
j, Z, k, x
Allowed substitution hints:    V( x, j, k)

Proof of Theorem caucvg
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 fveq2 5525 . . . . . 6  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
21cbvmptv 4111 . . . . 5  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( n  e.  Z  |->  ( F `  n ) )
3 caucvg.1 . . . . . . . . . 10  |-  Z  =  ( ZZ>= `  M )
4 uzssz 10247 . . . . . . . . . 10  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3208 . . . . . . . . 9  |-  Z  C_  ZZ
6 zssre 10031 . . . . . . . . 9  |-  ZZ  C_  RR
75, 6sstri 3188 . . . . . . . 8  |-  Z  C_  RR
87a1i 10 . . . . . . 7  |-  ( ph  ->  Z  C_  RR )
9 caucvg.2 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  CC )
102eqcomi 2287 . . . . . . . 8  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( k  e.  Z  |->  ( F `  k ) )
119, 10fmptd 5684 . . . . . . 7  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) ) : Z --> CC )
12 1rp 10358 . . . . . . . . . . 11  |-  1  e.  RR+
13 ne0i 3461 . . . . . . . . . . 11  |-  ( 1  e.  RR+  ->  RR+  =/=  (/) )
1412, 13ax-mp 8 . . . . . . . . . 10  |-  RR+  =/=  (/)
15 caucvg.3 . . . . . . . . . 10  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
16 r19.2z 3543 . . . . . . . . . 10  |-  ( (
RR+  =/=  (/)  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
1714, 15, 16sylancr 644 . . . . . . . . 9  |-  ( ph  ->  E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)
18 eluzel2 10235 . . . . . . . . . . . . 13  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
1918, 3eleq2s 2375 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  M  e.  ZZ )
2019a1d 22 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  M  e.  ZZ ) )
2120rexlimiv 2661 . . . . . . . . . 10  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  M  e.  ZZ )
2221rexlimivw 2663 . . . . . . . . 9  |-  ( E. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  M  e.  ZZ )
2317, 22syl 15 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
243uzsup 10967 . . . . . . . 8  |-  ( M  e.  ZZ  ->  sup ( Z ,  RR* ,  <  )  =  +oo )
2523, 24syl 15 . . . . . . 7  |-  ( ph  ->  sup ( Z ,  RR* ,  <  )  = 
+oo )
265sseli 3176 . . . . . . . . . . . . . . . 16  |-  ( j  e.  Z  ->  j  e.  ZZ )
275sseli 3176 . . . . . . . . . . . . . . . 16  |-  ( k  e.  Z  ->  k  e.  ZZ )
28 eluz 10241 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
2926, 27, 28syl2an 463 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
3029biimprd 214 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
31 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
32 eqid 2283 . . . . . . . . . . . . . . . . . . 19  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
33 fvex 5539 . . . . . . . . . . . . . . . . . . 19  |-  ( F `
 n )  e. 
_V
3431, 32, 33fvmpt3i 5605 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  k
)  =  ( F `
 k ) )
35 fveq2 5525 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
3635, 32, 33fvmpt3i 5605 . . . . . . . . . . . . . . . . . 18  |-  ( j  e.  Z  ->  (
( n  e.  Z  |->  ( F `  n
) ) `  j
)  =  ( F `
 j ) )
3734, 36oveqan12rd 5878 . . . . . . . . . . . . . . . . 17  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) )  =  ( ( F `  k )  -  ( F `  j )
) )
3837fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  =  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) ) )
3938breq1d 4033 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x  <->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
4039biimprd 214 . . . . . . . . . . . . . 14  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  -> 
( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4130, 40imim12d 68 . . . . . . . . . . . . 13  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4241ex 423 . . . . . . . . . . . 12  |-  ( j  e.  Z  ->  (
k  e.  Z  -> 
( ( k  e.  ( ZZ>= `  j )  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( j  <_ 
k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4342com23 72 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  ( k  e.  Z  ->  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) ) )
4443ralimdv2 2623 . . . . . . . . . 10  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) ) )
4544reximia 2648 . . . . . . . . 9  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  ->  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  (
( ( n  e.  Z  |->  ( F `  n ) ) `  k )  -  (
( n  e.  Z  |->  ( F `  n
) ) `  j
) ) )  < 
x ) )
4645ralimi 2618 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  ( j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `
 n ) ) `
 k )  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x ) )
4715, 46syl 15 . . . . . . 7  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  Z  (
j  <_  k  ->  ( abs `  ( ( ( n  e.  Z  |->  ( F `  n
) ) `  k
)  -  ( ( n  e.  Z  |->  ( F `  n ) ) `  j ) ) )  <  x
) )
488, 11, 25, 47caucvgr 12148 . . . . . 6  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  e.  dom  ~~> r  )
4911, 25rlimdm 12025 . . . . . 6  |-  ( ph  ->  ( ( n  e.  Z  |->  ( F `  n ) )  e. 
dom 
~~> r  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) ) )
5048, 49mpbid 201 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |->  ( F `  n
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
512, 50syl5eqbr 4056 . . . 4  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) ) )
52 eqid 2283 . . . . . 6  |-  ( k  e.  Z  |->  ( F `
 k ) )  =  ( k  e.  Z  |->  ( F `  k ) )
539, 52fmptd 5684 . . . . 5  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) ) : Z --> CC )
543, 23, 53rlimclim 12020 . . . 4  |-  ( ph  ->  ( ( k  e.  Z  |->  ( F `  k ) )  ~~> r  (  ~~> r  `  ( n  e.  Z  |->  ( F `
 n ) ) )  <->  ( k  e.  Z  |->  ( F `  k ) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) ) )
5551, 54mpbid 201 . . 3  |-  ( ph  ->  ( k  e.  Z  |->  ( F `  k
) )  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
56 caucvg.4 . . . 4  |-  ( ph  ->  F  e.  V )
573, 52climmpt 12045 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5823, 56, 57syl2anc 642 . . 3  |-  ( ph  ->  ( F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) )  <->  ( k  e.  Z  |->  ( F `
 k ) )  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) ) ) )
5955, 58mpbird 223 . 2  |-  ( ph  ->  F  ~~>  (  ~~> r  `  ( n  e.  Z  |->  ( F `  n
) ) ) )
60 climrel 11966 . . 3  |-  Rel  ~~>
6160releldmi 4915 . 2  |-  ( F  ~~>  (  ~~> r  `  (
n  e.  Z  |->  ( F `  n ) ) )  ->  F  e.  dom  ~~>  )
6259, 61syl 15 1  |-  ( ph  ->  F  e.  dom  ~~>  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736   1c1 8738    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   abscabs 11719    ~~> cli 11958    ~~> r crli 11959
This theorem is referenced by:  caucvgb  12152  cvgcmpce  12276  ulmcau  19772  dchrisumlem3  20640  rrncmslem  26556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fl 10925  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963
  Copyright terms: Public domain W3C validator