MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Structured version   Unicode version

Theorem caucvgb 12465
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caucvgb  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x    k, V
Allowed substitution hints:    V( x, j)

Proof of Theorem caucvgb
Dummy variables  i  m  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 5058 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. m <. F ,  m >.  e.  ~~>  ) )
21ibi 233 . . 3  |-  ( F  e.  dom  ~~>  ->  E. m <. F ,  m >.  e.  ~~>  )
3 df-br 4205 . . . . 5  |-  ( F  ~~>  m  <->  <. F ,  m >.  e.  ~~>  )
4 caucvgb.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
5 simpll 731 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  M  e.  ZZ )
6 1rp 10608 . . . . . . . . 9  |-  1  e.  RR+
76a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  1  e.  RR+ )
8 eqidd 2436 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
9 simpr 448 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  F  ~~>  m )
104, 5, 7, 8, 9climi 12296 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  m ) )  <  1 ) )
11 simpl 444 . . . . . . . . 9  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  m ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1211ralimi 2773 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  m ) )  <  1 )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
1312reximi 2805 . . . . . . 7  |-  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  m ) )  <  1 )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
1410, 13syl 16 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
1514ex 424 . . . . 5  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  m  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
163, 15syl5bir 210 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( <. F ,  m >.  e.  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
1716exlimdv 1646 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. m <. F ,  m >.  e.  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
182, 17syl5 30 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
19 simpl 444 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( F `  k
)  e.  CC )
2019ralimi 2773 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
2120reximi 2805 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
2221ralimi 2773 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )
23 fveq2 5720 . . . . . . . 8  |-  ( j  =  n  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  n )
)
2423raleqdv 2902 . . . . . . 7  |-  ( j  =  n  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  CC  <->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
2524cbvrexv 2925 . . . . . 6  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC  <->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
2625a1i 11 . . . . 5  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  CC  <->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
2726rspcv 3040 . . . 4  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )
286, 22, 27mpsyl 61 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
2928a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
30 eluzelz 10488 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
3130, 4eleq2s 2527 . . . . . . . . 9  |-  ( n  e.  Z  ->  n  e.  ZZ )
32 eqid 2435 . . . . . . . . . 10  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
3332climcau 12456 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
3431, 33sylan 458 . . . . . . . 8  |-  ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
3532r19.29uz 12146 . . . . . . . . . 10  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
3635ex 424 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
3736ralimdv 2777 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
3834, 37mpan9 456 . . . . . . 7  |-  ( ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938an32s 780 . . . . . 6  |-  ( ( ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039adantll 695 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  (
n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
41 simplrr 738 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
42 fveq2 5720 . . . . . . . . . 10  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
4342eleq1d 2501 . . . . . . . . 9  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
4443rspccva 3043 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  m  e.  ( ZZ>= `  n )
)  ->  ( F `  m )  e.  CC )
4541, 44sylan 458 . . . . . . 7  |-  ( ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )  /\  m  e.  (
ZZ>= `  n ) )  ->  ( F `  m )  e.  CC )
46 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ralimi 2773 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4842oveq1d 6088 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  j ) ) )
4948fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  j ) ) ) )
5049breq1d 4214 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
) )
5150cbvralv 2924 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  <->  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
)
5247, 51sylib 189 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x )
5352reximi 2805 . . . . . . . . . 10  |-  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
)
5453ralimi 2773 . . . . . . . . 9  |-  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x )
5554adantl 453 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x )
56 fveq2 5720 . . . . . . . . . . . 12  |-  ( j  =  i  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  i )
)
57 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( j  =  i  ->  ( F `  j )  =  ( F `  i ) )
5857oveq2d 6089 . . . . . . . . . . . . . 14  |-  ( j  =  i  ->  (
( F `  m
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  i ) ) )
5958fveq2d 5724 . . . . . . . . . . . . 13  |-  ( j  =  i  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  i ) ) ) )
6059breq1d 4214 . . . . . . . . . . . 12  |-  ( j  =  i  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  x
) )
6156, 60raleqbidv 2908 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x  <->  A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  x ) )
6261cbvrexv 2925 . . . . . . . . . 10  |-  ( E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  j )
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  x )
63 breq2 4208 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  y
) )
6463rexralbidv 2741 . . . . . . . . . 10  |-  ( x  =  y  ->  ( E. i  e.  ( ZZ>=
`  n ) A. m  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  y ) )
6562, 64syl5bb 249 . . . . . . . . 9  |-  ( x  =  y  ->  ( E. j  e.  ( ZZ>=
`  n ) A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  y ) )
6665cbvralv 2924 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x  <->  A. y  e.  RR+  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  y )
6755, 66sylib 189 . . . . . . 7  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. y  e.  RR+  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  y )
68 simpll 731 . . . . . . 7  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  F  e.  V )
6932, 45, 67, 68caucvg 12464 . . . . . 6  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  F  e.  dom  ~~>  )
7069adantlll 699 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  (
n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )  ->  F  e.  dom  ~~>  )
7140, 70impbida 806 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( F  e.  dom  ~~> 
<-> 
A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
724, 32cau4 12152 . . . . 5  |-  ( n  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
7372ad2antrl 709 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
7471, 73bitr4d 248 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( F  e.  dom  ~~> 
<-> 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
7574rexlimdvaa 2823 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
7618, 29, 75pm5.21ndd 344 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   <.cop 3809   class class class wbr 4204   dom cdm 4870   ` cfv 5446  (class class class)co 6073   CCcc 8980   1c1 8983    < clt 9112    - cmin 9283   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   abscabs 12031    ~~> cli 12270
This theorem is referenced by:  serf0  12466
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-fl 11194  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275
  Copyright terms: Public domain W3C validator