MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgb Unicode version

Theorem caucvgb 12393
Description: A function is convergent if and only if it is Cauchy. Theorem 12-5.3 of [Gleason] p. 180. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
caucvgb.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
caucvgb  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x    k, V
Allowed substitution hints:    V( x, j)

Proof of Theorem caucvgb
Dummy variables  i  m  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldm2g 4999 . . . 4  |-  ( F  e.  dom  ~~>  ->  ( F  e.  dom  ~~>  <->  E. m <. F ,  m >.  e.  ~~>  ) )
21ibi 233 . . 3  |-  ( F  e.  dom  ~~>  ->  E. m <. F ,  m >.  e.  ~~>  )
3 df-br 4147 . . . . 5  |-  ( F  ~~>  m  <->  <. F ,  m >.  e.  ~~>  )
4 caucvgb.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
5 simpll 731 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  M  e.  ZZ )
6 1rp 10541 . . . . . . . . 9  |-  1  e.  RR+
76a1i 11 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  1  e.  RR+ )
8 eqidd 2381 . . . . . . . 8  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
9 simpr 448 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  F  ~~>  m )
104, 5, 7, 8, 9climi 12224 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  m ) )  <  1 ) )
11 simpl 444 . . . . . . . . 9  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  m ) )  <  1 )  -> 
( F `  k
)  e.  CC )
1211ralimi 2717 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  m ) )  <  1 )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
1312reximi 2749 . . . . . . 7  |-  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  m ) )  <  1 )  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
1410, 13syl 16 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  F  ~~>  m )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
1514ex 424 . . . . 5  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  m  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
163, 15syl5bir 210 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( <. F ,  m >.  e.  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
1716exlimdv 1643 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. m <. F ,  m >.  e.  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
182, 17syl5 30 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
19 simpl 444 . . . . . . 7  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( F `  k
)  e.  CC )
2019ralimi 2717 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
2120reximi 2749 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC )
2221ralimi 2717 . . . 4  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC )
23 fveq2 5661 . . . . . . . 8  |-  ( j  =  n  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  n )
)
2423raleqdv 2846 . . . . . . 7  |-  ( j  =  n  ->  ( A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  CC  <->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
2524cbvrexv 2869 . . . . . 6  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( F `
 k )  e.  CC  <->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
2625a1i 11 . . . . 5  |-  ( x  =  1  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( F `  k )  e.  CC  <->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )
2726rspcv 2984 . . . 4  |-  ( 1  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( F `  k
)  e.  CC  ->  E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )
286, 22, 27mpsyl 61 . . 3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
2928a1i 11 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC ) )
30 eluzelz 10421 . . . . . . . . . 10  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
3130, 4eleq2s 2472 . . . . . . . . 9  |-  ( n  e.  Z  ->  n  e.  ZZ )
32 eqid 2380 . . . . . . . . . 10  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
3332climcau 12384 . . . . . . . . 9  |-  ( ( n  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
3431, 33sylan 458 . . . . . . . 8  |-  ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
3532r19.29uz 12074 . . . . . . . . . 10  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
3635ex 424 . . . . . . . . 9  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
3736ralimdv 2721 . . . . . . . 8  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
3834, 37mpan9 456 . . . . . . 7  |-  ( ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
3938an32s 780 . . . . . 6  |-  ( ( ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
4039adantll 695 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  (
n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
41 simplrr 738 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )
42 fveq2 5661 . . . . . . . . . 10  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
4342eleq1d 2446 . . . . . . . . 9  |-  ( k  =  m  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
4443rspccva 2987 . . . . . . . 8  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  m  e.  ( ZZ>= `  n )
)  ->  ( F `  m )  e.  CC )
4541, 44sylan 458 . . . . . . 7  |-  ( ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )  /\  m  e.  (
ZZ>= `  n ) )  ->  ( F `  m )  e.  CC )
46 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4746ralimi 2717 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )
4842oveq1d 6028 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  j ) ) )
4948fveq2d 5665 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  j ) ) ) )
5049breq1d 4156 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
) )
5150cbvralv 2868 . . . . . . . . . . . 12  |-  ( A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x  <->  A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
)
5247, 51sylib 189 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  A. m  e.  ( ZZ>= `  j )
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x )
5352reximi 2749 . . . . . . . . . 10  |-  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x
)
5453ralimi 2717 . . . . . . . . 9  |-  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x )
5554adantl 453 . . . . . . . 8  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x )
56 fveq2 5661 . . . . . . . . . . . 12  |-  ( j  =  i  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  i )
)
57 fveq2 5661 . . . . . . . . . . . . . . 15  |-  ( j  =  i  ->  ( F `  j )  =  ( F `  i ) )
5857oveq2d 6029 . . . . . . . . . . . . . 14  |-  ( j  =  i  ->  (
( F `  m
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  i ) ) )
5958fveq2d 5665 . . . . . . . . . . . . 13  |-  ( j  =  i  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  i ) ) ) )
6059breq1d 4156 . . . . . . . . . . . 12  |-  ( j  =  i  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  x
) )
6156, 60raleqbidv 2852 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x  <->  A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  x ) )
6261cbvrexv 2869 . . . . . . . . . 10  |-  ( E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  j )
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  x )
63 breq2 4150 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  x  <->  ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  y
) )
6463rexralbidv 2686 . . . . . . . . . 10  |-  ( x  =  y  ->  ( E. i  e.  ( ZZ>=
`  n ) A. m  e.  ( ZZ>= `  i ) ( abs `  ( ( F `  m )  -  ( F `  i )
) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  y ) )
6562, 64syl5bb 249 . . . . . . . . 9  |-  ( x  =  y  ->  ( E. j  e.  ( ZZ>=
`  n ) A. m  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  x  <->  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>= `  i )
( abs `  (
( F `  m
)  -  ( F `
 i ) ) )  <  y ) )
6665cbvralv 2868 . . . . . . . 8  |-  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  m )  -  ( F `  j ) ) )  <  x  <->  A. y  e.  RR+  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  y )
6755, 66sylib 189 . . . . . . 7  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  A. y  e.  RR+  E. i  e.  ( ZZ>= `  n ) A. m  e.  ( ZZ>=
`  i ) ( abs `  ( ( F `  m )  -  ( F `  i ) ) )  <  y )
68 simpll 731 . . . . . . 7  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  F  e.  V )
6932, 45, 67, 68caucvg 12392 . . . . . 6  |-  ( ( ( F  e.  V  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )  ->  F  e.  dom  ~~>  )
7069adantlll 699 . . . . 5  |-  ( ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  (
n  e.  Z  /\  A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC ) )  /\  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )  ->  F  e.  dom  ~~>  )
7140, 70impbida 806 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( F  e.  dom  ~~> 
<-> 
A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
724, 32cau4 12080 . . . . 5  |-  ( n  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
7372ad2antrl 709 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
7471, 73bitr4d 248 . . 3  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  ( n  e.  Z  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC ) )  ->  ( F  e.  dom  ~~> 
<-> 
A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
7574rexlimdvaa 2767 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
7618, 29, 75pm5.21ndd 344 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  e.  dom  ~~>  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643   <.cop 3753   class class class wbr 4146   dom cdm 4811   ` cfv 5387  (class class class)co 6013   CCcc 8914   1c1 8917    < clt 9046    - cmin 9216   ZZcz 10207   ZZ>=cuz 10413   RR+crp 10537   abscabs 11959    ~~> cli 12198
This theorem is referenced by:  serf0  12394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993  ax-pre-sup 8994  ax-addf 8995  ax-mulf 8996
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-pm 6950  df-en 7039  df-dom 7040  df-sdom 7041  df-sup 7374  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-2 9983  df-3 9984  df-n0 10147  df-z 10208  df-uz 10414  df-rp 10538  df-ico 10847  df-fl 11122  df-seq 11244  df-exp 11303  df-cj 11824  df-re 11825  df-im 11826  df-sqr 11960  df-abs 11961  df-limsup 12185  df-clim 12202  df-rlim 12203
  Copyright terms: Public domain W3C validator