MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem Unicode version

Theorem caucvgrlem 12145
Description: Lemma for caurcvgr 12146. (Contributed by Mario Carneiro, 15-Feb-2014.) (Revised by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caurcvgr.1  |-  ( ph  ->  A  C_  RR )
caurcvgr.2  |-  ( ph  ->  F : A --> RR )
caurcvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caurcvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
caucvgrlem.4  |-  ( ph  ->  R  e.  RR+ )
Assertion
Ref Expression
caucvgrlem  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x    R, j, k, x

Proof of Theorem caucvgrlem
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgrlem.4 . . 3  |-  ( ph  ->  R  e.  RR+ )
2 caurcvgr.4 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
3 breq2 4027 . . . . . 6  |-  ( x  =  R  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  <->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) )
43imbi2d 307 . . . . 5  |-  ( x  =  R  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <-> 
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) ) )
54rexralbidv 2587 . . . 4  |-  ( x  =  R  ->  ( E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) ) )
65rspcv 2880 . . 3  |-  ( R  e.  RR+  ->  ( A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
)  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )
71, 2, 6sylc 56 . 2  |-  ( ph  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
8 caurcvgr.2 . . . . . . . . 9  |-  ( ph  ->  F : A --> RR )
9 caurcvgr.1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
10 reex 8828 . . . . . . . . . . 11  |-  RR  e.  _V
1110ssex 4158 . . . . . . . . . 10  |-  ( A 
C_  RR  ->  A  e. 
_V )
129, 11syl 15 . . . . . . . . 9  |-  ( ph  ->  A  e.  _V )
1310a1i 10 . . . . . . . . 9  |-  ( ph  ->  RR  e.  _V )
14 fex2 5401 . . . . . . . . 9  |-  ( ( F : A --> RR  /\  A  e.  _V  /\  RR  e.  _V )  ->  F  e.  _V )
158, 12, 13, 14syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  F  e.  _V )
16 limsupcl 11947 . . . . . . . 8  |-  ( F  e.  _V  ->  ( limsup `
 F )  e. 
RR* )
1715, 16syl 15 . . . . . . 7  |-  ( ph  ->  ( limsup `  F )  e.  RR* )
1817adantr 451 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  e.  RR* )
198adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  F : A --> RR )
20 simprl 732 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
j  e.  A )
21 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : A --> RR  /\  j  e.  A )  ->  ( F `  j
)  e.  RR )
2219, 20, 21syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( F `  j
)  e.  RR )
231rpred 10390 . . . . . . . 8  |-  ( ph  ->  R  e.  RR )
2423adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  R  e.  RR )
2522, 24readdcld 8862 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  +  R
)  e.  RR )
26 mnfxr 10456 . . . . . . . 8  |-  -oo  e.  RR*
2726a1i 10 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  -oo  e.  RR* )
2822, 24resubcld 9211 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  e.  RR )
2928rexrd 8881 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  e.  RR* )
30 mnflt 10464 . . . . . . . 8  |-  ( ( ( F `  j
)  -  R )  e.  RR  ->  -oo  <  ( ( F `  j
)  -  R ) )
3128, 30syl 15 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  -oo  <  ( ( F `
 j )  -  R ) )
329adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A  C_  RR )
33 ressxr 8876 . . . . . . . . . 10  |-  RR  C_  RR*
34 fss 5397 . . . . . . . . . 10  |-  ( ( F : A --> RR  /\  RR  C_  RR* )  ->  F : A --> RR* )
358, 33, 34sylancl 643 . . . . . . . . 9  |-  ( ph  ->  F : A --> RR* )
3635adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  F : A --> RR* )
37 caurcvgr.3 . . . . . . . . 9  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
3837adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
3932, 20sseldd 3181 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
j  e.  RR )
40 simprr 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
41 breq2 4027 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
j  <_  k  <->  j  <_  m ) )
42 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
4342oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  (
( F `  k
)  -  ( F `
 j ) )  =  ( ( F `
 m )  -  ( F `  j ) ) )
4443fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  m )  -  ( F `  j ) ) ) )
4544breq1d 4033 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R  <->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  R
) )
4641, 45imbi12d 311 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  <-> 
( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) ) )
4746cbvralv 2764 . . . . . . . . . . 11  |-  ( A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R )  <->  A. m  e.  A  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( F `  j )
) )  <  R
) )
4840, 47sylib 188 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) )
49 ffvelrn 5663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> RR  /\  m  e.  A )  ->  ( F `  m
)  e.  RR )
5019, 49sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( F `  m )  e.  RR )
5122adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( F `  j )  e.  RR )
5250, 51resubcld 9211 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( F `  m
)  -  ( F `
 j ) )  e.  RR )
5352recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( F `  m
)  -  ( F `
 j ) )  e.  CC )
5453abscld 11918 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  e.  RR )
5524adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  R  e.  RR )
56 ltle 8910 . . . . . . . . . . . . . . 15  |-  ( ( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  e.  RR  /\  R  e.  RR )  ->  ( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
)
5754, 55, 56syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
)
5850, 51, 55absdifled 11917 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R  <->  ( (
( F `  j
)  -  R )  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) ) ) )
5957, 58sylibd 205 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  /\  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) ) )
60 simpl 443 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  j )  -  R
)  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) )  ->  (
( F `  j
)  -  R )  <_  ( F `  m ) )
6159, 60syl6 29 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) ) )
6261imim2d 48 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )  ->  ( j  <_  m  ->  ( ( F `
 j )  -  R )  <_  ( F `  m )
) ) )
6362ralimdva 2621 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )  ->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) ) ) )
6448, 63mpd 14 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) ) )
65 breq1 4026 . . . . . . . . . . . 12  |-  ( n  =  j  ->  (
n  <_  m  <->  j  <_  m ) )
6665imbi1d 308 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( n  <_  m  ->  ( ( F `  j )  -  R
)  <_  ( F `  m ) )  <->  ( j  <_  m  ->  ( ( F `  j )  -  R )  <_  ( F `  m )
) ) )
6766ralbidv 2563 . . . . . . . . . 10  |-  ( n  =  j  ->  ( A. m  e.  A  ( n  <_  m  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) )  <->  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j )  -  R )  <_  ( F `  m )
) ) )
6867rspcev 2884 . . . . . . . . 9  |-  ( ( j  e.  RR  /\  A. m  e.  A  ( j  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )
6939, 64, 68syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( ( F `  j
)  -  R )  <_  ( F `  m ) ) )
7032, 36, 29, 38, 69limsupbnd2 11957 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  -  R
)  <_  ( limsup `  F ) )
7127, 29, 18, 31, 70xrltletrd 10492 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  -oo  <  ( limsup `  F
) )
7225rexrd 8881 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( F `  j )  +  R
)  e.  RR* )
7354adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  e.  RR )
7424adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  RR )
75 simprl 732 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  m  e.  A )
76 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R ) )
77 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
j  <_  m )
7846rspcv 2880 . . . . . . . . . . . . . 14  |-  ( m  e.  A  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  ->  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R ) ) )
7975, 76, 77, 78syl3c 57 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <  R )
8073, 74, 79ltled 8967 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R )
8150adantrr 697 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  e.  RR )
8222adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  j
)  e.  RR )
8381, 82, 74absdifled 11917 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  <_  R  <->  ( (
( F `  j
)  -  R )  <_  ( F `  m )  /\  ( F `  m )  <_  ( ( F `  j )  +  R
) ) ) )
8480, 83mpbid 201 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  /\  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) )
8584simprd 449 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  <_  ( ( F `  j )  +  R ) )
8685expr 598 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
j  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
8786ralrimiva 2626 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( F `  m
)  <_  ( ( F `  j )  +  R ) ) )
8865imbi1d 308 . . . . . . . . . 10  |-  ( n  =  j  ->  (
( n  <_  m  ->  ( F `  m
)  <_  ( ( F `  j )  +  R ) )  <->  ( j  <_  m  ->  ( F `  m )  <_  (
( F `  j
)  +  R ) ) ) )
8988ralbidv 2563 . . . . . . . . 9  |-  ( n  =  j  ->  ( A. m  e.  A  ( n  <_  m  -> 
( F `  m
)  <_  ( ( F `  j )  +  R ) )  <->  A. m  e.  A  ( j  <_  m  ->  ( F `  m )  <_  (
( F `  j
)  +  R ) ) ) )
9089rspcev 2884 . . . . . . . 8  |-  ( ( j  e.  RR  /\  A. m  e.  A  ( j  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
9139, 87, 90syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  E. n  e.  RR  A. m  e.  A  ( n  <_  m  ->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
9232, 36, 72, 91limsupbnd1 11956 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  <_  ( ( F `  j )  +  R
) )
93 xrre 10498 . . . . . 6  |-  ( ( ( ( limsup `  F
)  e.  RR*  /\  (
( F `  j
)  +  R )  e.  RR )  /\  (  -oo  <  ( limsup `  F )  /\  ( limsup `
 F )  <_ 
( ( F `  j )  +  R
) ) )  -> 
( limsup `  F )  e.  RR )
9418, 25, 71, 92, 93syl22anc 1183 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( limsup `  F )  e.  RR )
9594adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  e.  RR )
9681, 95resubcld 9211 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  ( limsup `
 F ) )  e.  RR )
9796recnd 8861 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  ( limsup `
 F ) )  e.  CC )
9897abscld 11918 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  e.  RR )
99 2re 9815 . . . . . . . . . 10  |-  2  e.  RR
100 remulcl 8822 . . . . . . . . . 10  |-  ( ( 2  e.  RR  /\  R  e.  RR )  ->  ( 2  x.  R
)  e.  RR )
10199, 74, 100sylancr 644 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  e.  RR )
102 3re 9817 . . . . . . . . . 10  |-  3  e.  RR
103 remulcl 8822 . . . . . . . . . 10  |-  ( ( 3  e.  RR  /\  R  e.  RR )  ->  ( 3  x.  R
)  e.  RR )
104102, 74, 103sylancr 644 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 3  x.  R
)  e.  RR )
10581recnd 8861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  m
)  e.  CC )
10695recnd 8861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  e.  CC )
107105, 106abssubd 11935 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  =  ( abs `  (
( limsup `  F )  -  ( F `  m ) ) ) )
10881, 101resubcld 9211 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  e.  RR )
10928adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  e.  RR )
11074recnd 8861 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  CC )
1111102timesd 9954 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  =  ( R  +  R ) )
112111oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  =  ( ( F `  m )  -  ( R  +  R ) ) )
113105, 110, 110subsub4d 9188 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  -  R
)  =  ( ( F `  m )  -  ( R  +  R ) ) )
114112, 113eqtr4d 2318 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  =  ( ( ( F `  m
)  -  R )  -  R ) )
11581, 74resubcld 9211 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  R
)  e.  RR )
11681, 74, 82lesubaddd 9369 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  <_  ( F `  j )  <->  ( F `  m )  <_  ( ( F `
 j )  +  R ) ) )
11785, 116mpbird 223 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  R
)  <_  ( F `  j ) )
118115, 82, 74, 117lesub1dd 9388 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  -  R )  -  R
)  <_  ( ( F `  j )  -  R ) )
119114, 118eqbrtrd 4043 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  <_  ( ( F `  j )  -  R ) )
12070adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  <_  ( limsup `  F ) )
121108, 109, 95, 119, 120letrd 8973 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  -  (
2  x.  R ) )  <_  ( limsup `  F ) )
12225adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  e.  RR )
12381, 101readdcld 8862 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  ( 2  x.  R ) )  e.  RR )
12492adantr 451 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  <_  ( ( F `  j )  +  R
) )
12581, 74readdcld 8862 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  R
)  e.  RR )
12684, 60syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  -  R
)  <_  ( F `  m ) )
12782, 74, 81lesubaddd 9369 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 j )  -  R )  <_  ( F `  m )  <->  ( F `  j )  <_  ( ( F `
 m )  +  R ) ) )
128126, 127mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( F `  j
)  <_  ( ( F `  m )  +  R ) )
12982, 125, 74, 128leadd1dd 9386 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  <_  ( (
( F `  m
)  +  R )  +  R ) )
130105, 110, 110addassd 8857 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  +  R )  +  R
)  =  ( ( F `  m )  +  ( R  +  R ) ) )
131111oveq2d 5874 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  m )  +  ( 2  x.  R ) )  =  ( ( F `  m )  +  ( R  +  R ) ) )
132130, 131eqtr4d 2318 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( ( F `
 m )  +  R )  +  R
)  =  ( ( F `  m )  +  ( 2  x.  R ) ) )
133129, 132breqtrd 4047 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( F `  j )  +  R
)  <_  ( ( F `  m )  +  ( 2  x.  R ) ) )
13495, 122, 123, 124, 133letrd 8973 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( limsup `  F )  <_  ( ( F `  m )  +  ( 2  x.  R ) ) )
13595, 81, 101absdifled 11917 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( ( abs `  (
( limsup `  F )  -  ( F `  m ) ) )  <_  ( 2  x.  R )  <->  ( (
( F `  m
)  -  ( 2  x.  R ) )  <_  ( limsup `  F
)  /\  ( limsup `  F )  <_  (
( F `  m
)  +  ( 2  x.  R ) ) ) ) )
136121, 134, 135mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( limsup `  F )  -  ( F `  m ) ) )  <_  ( 2  x.  R ) )
137107, 136eqbrtrd 4043 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <_  ( 2  x.  R ) )
138 2lt3 9887 . . . . . . . . . 10  |-  2  <  3
13999a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
2  e.  RR )
140102a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
3  e.  RR )
1411adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  R  e.  RR+ )
142141adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  ->  R  e.  RR+ )
143139, 140, 142ltmul1d 10427 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  <  3  <->  ( 2  x.  R )  <  ( 3  x.  R ) ) )
144138, 143mpbii 202 . . . . . . . . 9  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( 2  x.  R
)  <  ( 3  x.  R ) )
14598, 101, 104, 137, 144lelttrd 8974 . . . . . . . 8  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  ( m  e.  A  /\  j  <_  m ) )  -> 
( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) )
146145expr 598 . . . . . . 7  |-  ( ( ( ph  /\  (
j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  R ) ) )  /\  m  e.  A )  ->  (
j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) )
147146ralrimiva 2626 . . . . . 6  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. m  e.  A  ( j  <_  m  ->  ( abs `  (
( F `  m
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) )
14842oveq1d 5873 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( F `  k
)  -  ( limsup `  F ) )  =  ( ( F `  m )  -  ( limsup `
 F ) ) )
149148fveq2d 5529 . . . . . . . . 9  |-  ( k  =  m  ->  ( abs `  ( ( F `
 k )  -  ( limsup `  F )
) )  =  ( abs `  ( ( F `  m )  -  ( limsup `  F
) ) ) )
150149breq1d 4033 . . . . . . . 8  |-  ( k  =  m  ->  (
( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R )  <->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) )
15141, 150imbi12d 311 . . . . . . 7  |-  ( k  =  m  ->  (
( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) )  <->  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) ) )
152151cbvralv 2764 . . . . . 6  |-  ( A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) )  <->  A. m  e.  A  ( j  <_  m  ->  ( abs `  ( ( F `  m )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) )
153147, 152sylibr 203 . . . . 5  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) )
15494, 153jca 518 . . . 4  |-  ( (
ph  /\  ( j  e.  A  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
) ) )  -> 
( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
155154expr 598 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  R )  ->  ( ( limsup `  F )  e.  RR  /\ 
A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  ( 3  x.  R ) ) ) ) )
156155reximdva 2655 . 2  |-  ( ph  ->  ( E. j  e.  A  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  R
)  ->  E. j  e.  A  ( ( limsup `
 F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  R ) ) ) ) )
1577, 156mpd 14 1  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  R
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   class class class wbr 4023   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   RRcr 8736    + caddc 8740    x. cmul 8742    +oocpnf 8864    -oocmnf 8865   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   2c2 9795   3c3 9796   RR+crp 10354   abscabs 11719   limsupclsp 11944
This theorem is referenced by:  caurcvgr  12146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945
  Copyright terms: Public domain W3C validator