MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caucvgrlem2 Unicode version

Theorem caucvgrlem2 12147
Description: Lemma for caucvgr 12148. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
caucvgr.1  |-  ( ph  ->  A  C_  RR )
caucvgr.2  |-  ( ph  ->  F : A --> CC )
caucvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caucvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
caucvgrlem2.5  |-  H : CC
--> RR
caucvgrlem2.6  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
Assertion
Ref Expression
caucvgrlem2  |-  ( ph  ->  ( n  e.  A  |->  ( H `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( H  o.  F ) ) )
Distinct variable groups:    j, k, n, x, A    j, F, k, n, x    j, H, k, n, x    ph, j,
k, n, x

Proof of Theorem caucvgrlem2
StepHypRef Expression
1 caucvgrlem2.5 . . 3  |-  H : CC
--> RR
2 caucvgr.2 . . 3  |-  ( ph  ->  F : A --> CC )
3 fcompt 5694 . . 3  |-  ( ( H : CC --> RR  /\  F : A --> CC )  ->  ( H  o.  F )  =  ( n  e.  A  |->  ( H `  ( F `
 n ) ) ) )
41, 2, 3sylancr 644 . 2  |-  ( ph  ->  ( H  o.  F
)  =  ( n  e.  A  |->  ( H `
 ( F `  n ) ) ) )
5 caucvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
6 fco 5398 . . . . . 6  |-  ( ( H : CC --> RR  /\  F : A --> CC )  ->  ( H  o.  F ) : A --> RR )
71, 2, 6sylancr 644 . . . . 5  |-  ( ph  ->  ( H  o.  F
) : A --> RR )
8 caucvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
9 caucvgr.4 . . . . . 6  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
102ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  F : A
--> CC )
11 simprr 733 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  k  e.  A )
12 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( F `  k
)  e.  CC )
1310, 11, 12syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( F `  k )  e.  CC )
14 simprl 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  j  e.  A )
15 ffvelrn 5663 . . . . . . . . . . . . . . 15  |-  ( ( F : A --> CC  /\  j  e.  A )  ->  ( F `  j
)  e.  CC )
1610, 14, 15syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( F `  j )  e.  CC )
17 caucvgrlem2.6 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
1813, 16, 17syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
191ffvelrni 5664 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  k )  e.  CC  ->  ( H `  ( F `  k ) )  e.  RR )
2013, 19syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( H `  ( F `  k
) )  e.  RR )
211ffvelrni 5664 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  j )  e.  CC  ->  ( H `  ( F `  j ) )  e.  RR )
2216, 21syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( H `  ( F `  j
) )  e.  RR )
2320, 22resubcld 9211 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H `  ( F `  k ) )  -  ( H `  ( F `
 j ) ) )  e.  RR )
2423recnd 8861 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H `  ( F `  k ) )  -  ( H `  ( F `
 j ) ) )  e.  CC )
2524abscld 11918 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  e.  RR )
2613, 16subcld 9157 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( F `  k )  -  ( F `  j ) )  e.  CC )
2726abscld 11918 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  e.  RR )
28 rpre 10360 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  x  e.  RR )
2928ad2antlr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  x  e.  RR )
30 lelttr 8912 . . . . . . . . . . . . . 14  |-  ( ( ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
3125, 27, 29, 30syl3anc 1182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <_  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
)  ->  ( abs `  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
3218, 31mpand 656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x  ->  ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
33 fvco3 5596 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  k  e.  A )  ->  ( ( H  o.  F ) `  k
)  =  ( H `
 ( F `  k ) ) )
3410, 11, 33syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H  o.  F ) `  k )  =  ( H `  ( F `
 k ) ) )
35 fvco3 5596 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> CC  /\  j  e.  A )  ->  ( ( H  o.  F ) `  j
)  =  ( H `
 ( F `  j ) ) )
3610, 14, 35syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( H  o.  F ) `  j )  =  ( H `  ( F `
 j ) ) )
3734, 36oveq12d 5876 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) )  =  ( ( H `  ( F `  k ) )  -  ( H `
 ( F `  j ) ) ) )
3837fveq2d 5529 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( abs `  ( ( ( H  o.  F ) `  k )  -  (
( H  o.  F
) `  j )
) )  =  ( abs `  ( ( H `  ( F `
 k ) )  -  ( H `  ( F `  j ) ) ) ) )
3938breq1d 4033 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( ( H  o.  F ) `
 k )  -  ( ( H  o.  F ) `  j
) ) )  < 
x  <->  ( abs `  (
( H `  ( F `  k )
)  -  ( H `
 ( F `  j ) ) ) )  <  x ) )
4032, 39sylibrd 225 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) )
4140imim2d 48 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  A  /\  k  e.  A )
)  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4241anassrs 629 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  A )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  -> 
( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4342ralimdva 2621 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  A )  ->  ( A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4443reximdva 2655 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( ( H  o.  F ) `  k
)  -  ( ( H  o.  F ) `
 j ) ) )  <  x ) ) )
4544ralimdva 2621 . . . . . 6  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( ( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) ) )  <  x ) ) )
469, 45mpd 14 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( ( H  o.  F
) `  k )  -  ( ( H  o.  F ) `  j ) ) )  <  x ) )
475, 7, 8, 46caurcvgr 12146 . . . 4  |-  ( ph  ->  ( H  o.  F
)  ~~> r  ( limsup `  ( H  o.  F
) ) )
48 rlimrel 11967 . . . . 5  |-  Rel  ~~> r
4948releldmi 4915 . . . 4  |-  ( ( H  o.  F )  ~~> r  ( limsup `  ( H  o.  F )
)  ->  ( H  o.  F )  e.  dom  ~~> r  )
5047, 49syl 15 . . 3  |-  ( ph  ->  ( H  o.  F
)  e.  dom  ~~> r  )
51 ax-resscn 8794 . . . . 5  |-  RR  C_  CC
52 fss 5397 . . . . 5  |-  ( ( ( H  o.  F
) : A --> RR  /\  RR  C_  CC )  -> 
( H  o.  F
) : A --> CC )
537, 51, 52sylancl 643 . . . 4  |-  ( ph  ->  ( H  o.  F
) : A --> CC )
5453, 8rlimdm 12025 . . 3  |-  ( ph  ->  ( ( H  o.  F )  e.  dom  ~~> r  <-> 
( H  o.  F
)  ~~> r  (  ~~> r  `  ( H  o.  F
) ) ) )
5550, 54mpbid 201 . 2  |-  ( ph  ->  ( H  o.  F
)  ~~> r  (  ~~> r  `  ( H  o.  F
) ) )
564, 55eqbrtrrd 4045 1  |-  ( ph  ->  ( n  e.  A  |->  ( H `  ( F `  n )
) )  ~~> r  (  ~~> r  `  ( H  o.  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   supcsup 7193   CCcc 8735   RRcr 8736    +oocpnf 8864   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   abscabs 11719   limsupclsp 11944    ~~> r crli 11959
This theorem is referenced by:  caucvgr  12148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-rlim 11963
  Copyright terms: Public domain W3C validator