MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caufpm Unicode version

Theorem caufpm 19099
Description: Inclusion of a Cauchy sequence, under our definition. (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
caufpm  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  e.  ( X  ^pm  CC ) )

Proof of Theorem caufpm
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscau 19093 . 2  |-  ( D  e.  ( * Met `  X )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. y  e.  ZZ  ( F  |`  ( ZZ>= `  y ) ) : ( ZZ>= `  y ) --> ( ( F `  y ) ( ball `  D ) x ) ) ) )
21simprbda 607 1  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  e.  ( X  ^pm  CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717   A.wral 2642   E.wrex 2643    |` cres 4813   -->wf 5383   ` cfv 5387  (class class class)co 6013    ^pm cpm 6948   CCcc 8914   ZZcz 10207   ZZ>=cuz 10413   RR+crp 10537   * Metcxmt 16605   ballcbl 16607   Caucca 19070
This theorem is referenced by:  cmetcaulem  19105  causs  19115
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-map 6949  df-xr 9050  df-xmet 16612  df-cau 19073
  Copyright terms: Public domain W3C validator