MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvgr Structured version   Unicode version

Theorem caurcvgr 12459
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that  F is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016.)
Hypotheses
Ref Expression
caurcvgr.1  |-  ( ph  ->  A  C_  RR )
caurcvgr.2  |-  ( ph  ->  F : A --> RR )
caurcvgr.3  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
caurcvgr.4  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
Assertion
Ref Expression
caurcvgr  |-  ( ph  ->  F  ~~> r  ( limsup `  F ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x

Proof of Theorem caurcvgr
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 caurcvgr.1 . . . . 5  |-  ( ph  ->  A  C_  RR )
2 caurcvgr.2 . . . . 5  |-  ( ph  ->  F : A --> RR )
3 caurcvgr.3 . . . . 5  |-  ( ph  ->  sup ( A ,  RR* ,  <  )  = 
+oo )
4 caurcvgr.4 . . . . 5  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
5 1rp 10608 . . . . . 6  |-  1  e.  RR+
65a1i 11 . . . . 5  |-  ( ph  ->  1  e.  RR+ )
71, 2, 3, 4, 6caucvgrlem 12458 . . . 4  |-  ( ph  ->  E. j  e.  A  ( ( limsup `  F
)  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  1 ) ) ) )
8 simpl 444 . . . . 5  |-  ( ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  1 ) ) )  ->  ( limsup `  F )  e.  RR )
98rexlimivw 2818 . . . 4  |-  ( E. j  e.  A  ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  1 ) ) )  ->  ( limsup `  F )  e.  RR )
107, 9syl 16 . . 3  |-  ( ph  ->  ( limsup `  F )  e.  RR )
1110recnd 9106 . 2  |-  ( ph  ->  ( limsup `  F )  e.  CC )
121adantr 452 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  A  C_  RR )
132adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  F : A
--> RR )
143adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  sup ( A ,  RR* ,  <  )  =  +oo )
154adantr 452 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  A. x  e.  RR+  E. j  e.  A  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  x
) )
16 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  RR+ )
17 3re 10063 . . . . . . . . 9  |-  3  e.  RR
18 3pos 10076 . . . . . . . . 9  |-  0  <  3
1917, 18elrpii 10607 . . . . . . . 8  |-  3  e.  RR+
20 rpdivcl 10626 . . . . . . . 8  |-  ( ( y  e.  RR+  /\  3  e.  RR+ )  ->  (
y  /  3 )  e.  RR+ )
2116, 19, 20sylancl 644 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( y  /  3 )  e.  RR+ )
2212, 13, 14, 15, 21caucvgrlem 12458 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  A  ( ( limsup `
 F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) ) )
23 simpr 448 . . . . . . 7  |-  ( ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )  ->  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
2423reximi 2805 . . . . . 6  |-  ( E. j  e.  A  ( ( limsup `  F )  e.  RR  /\  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
2522, 24syl 16 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  A  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
26 ssrexv 3400 . . . . 5  |-  ( A 
C_  RR  ->  ( E. j  e.  A  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  (
y  /  3 ) ) )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) ) )
2712, 25, 26sylc 58 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) ) )
28 rpcn 10612 . . . . . . . . 9  |-  ( y  e.  RR+  ->  y  e.  CC )
2928adantl 453 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  y  e.  CC )
30 3cn 10064 . . . . . . . . 9  |-  3  e.  CC
3130a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  3  e.  CC )
32 3ne0 10077 . . . . . . . . 9  |-  3  =/=  0
3332a1i 11 . . . . . . . 8  |-  ( (
ph  /\  y  e.  RR+ )  ->  3  =/=  0 )
3429, 31, 33divcan2d 9784 . . . . . . 7  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( 3  x.  ( y  / 
3 ) )  =  y )
3534breq2d 4216 . . . . . 6  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( ( abs `  ( ( F `
 k )  -  ( limsup `  F )
) )  <  (
3  x.  ( y  /  3 ) )  <-> 
( abs `  (
( F `  k
)  -  ( limsup `  F ) ) )  <  y ) )
3635imbi2d 308 . . . . 5  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
( 3  x.  (
y  /  3 ) ) )  <->  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  y ) ) )
3736rexralbidv 2741 . . . 4  |-  ( (
ph  /\  y  e.  RR+ )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  ( 3  x.  ( y  / 
3 ) ) )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
y ) ) )
3827, 37mpbid 202 . . 3  |-  ( (
ph  /\  y  e.  RR+ )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  y ) )
3938ralrimiva 2781 . 2  |-  ( ph  ->  A. y  e.  RR+  E. j  e.  RR  A. k  e.  A  (
j  <_  k  ->  ( abs `  ( ( F `  k )  -  ( limsup `  F
) ) )  < 
y ) )
40 ax-resscn 9039 . . . 4  |-  RR  C_  CC
41 fss 5591 . . . 4  |-  ( ( F : A --> RR  /\  RR  C_  CC )  ->  F : A --> CC )
422, 40, 41sylancl 644 . . 3  |-  ( ph  ->  F : A --> CC )
43 eqidd 2436 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  =  ( F `  k ) )
4442, 1, 43rlim 12281 . 2  |-  ( ph  ->  ( F  ~~> r  (
limsup `  F )  <->  ( ( limsup `
 F )  e.  CC  /\  A. y  e.  RR+  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ( abs `  ( ( F `  k )  -  ( limsup `
 F ) ) )  <  y ) ) ) )
4511, 39, 44mpbir2and 889 1  |-  ( ph  ->  F  ~~> r  ( limsup `  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204   -->wf 5442   ` cfv 5446  (class class class)co 6073   supcsup 7437   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    +oocpnf 9109   RR*cxr 9111    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   3c3 10042   RR+crp 10604   abscabs 12031   limsupclsp 12256    ~~> r crli 12271
This theorem is referenced by:  caucvgrlem2  12460  caurcvg  12462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-ico 10914  df-seq 11316  df-exp 11375  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-rlim 12275
  Copyright terms: Public domain W3C validator