Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caures Unicode version

Theorem caures 26579
Description: The restriction of a Cauchy sequence to a set of upper integers is Cauchy. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Jun-2014.)
Hypotheses
Ref Expression
caures.1  |-  Z  =  ( ZZ>= `  M )
caures.3  |-  ( ph  ->  M  e.  ZZ )
caures.4  |-  ( ph  ->  D  e.  ( Met `  X ) )
caures.5  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
Assertion
Ref Expression
caures  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  |`  Z )  e.  ( Cau `  D
) ) )

Proof of Theorem caures
Dummy variables  j 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caures.1 . . . . . . . . . . 11  |-  Z  =  ( ZZ>= `  M )
21uztrn2 10261 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
32adantll 694 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  k  e.  Z )
43biantrurd 494 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  e.  dom  F  <->  ( k  e.  Z  /\  k  e.  dom  F ) ) )
5 dmres 4992 . . . . . . . . 9  |-  dom  ( F  |`  Z )  =  ( Z  i^i  dom  F )
65elin2 3372 . . . . . . . 8  |-  ( k  e.  dom  ( F  |`  Z )  <->  ( k  e.  Z  /\  k  e.  dom  F ) )
74, 6syl6bbr 254 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( k  e.  dom  F  <->  k  e.  dom  ( F  |`  Z ) ) )
873anbi1d 1256 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
98ralbidva 2572 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
109rexbidva 2573 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) )
1110ralbidv 2576 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) ) )
12 caures.5 . . . 4  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
1312biantrurd 494 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
14 caures.4 . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
15 elfvdm 5570 . . . . . . 7  |-  ( D  e.  ( Met `  X
)  ->  X  e.  dom  Met )
1614, 15syl 15 . . . . . 6  |-  ( ph  ->  X  e.  dom  Met )
17 cnex 8834 . . . . . 6  |-  CC  e.  _V
18 ssid 3210 . . . . . . 7  |-  X  C_  X
19 uzssz 10263 . . . . . . . . 9  |-  ( ZZ>= `  M )  C_  ZZ
20 zsscn 10048 . . . . . . . . 9  |-  ZZ  C_  CC
2119, 20sstri 3201 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  CC
221, 21eqsstri 3221 . . . . . . 7  |-  Z  C_  CC
23 pmss12g 6810 . . . . . . 7  |-  ( ( ( X  C_  X  /\  Z  C_  CC )  /\  ( X  e. 
dom  Met  /\  CC  e.  _V ) )  ->  ( X  ^pm  Z )  C_  ( X  ^pm  CC ) )
2418, 22, 23mpanl12 663 . . . . . 6  |-  ( ( X  e.  dom  Met  /\  CC  e.  _V )  ->  ( X  ^pm  Z
)  C_  ( X  ^pm  CC ) )
2516, 17, 24sylancl 643 . . . . 5  |-  ( ph  ->  ( X  ^pm  Z
)  C_  ( X  ^pm  CC ) )
26 fvex 5555 . . . . . . 7  |-  ( ZZ>= `  M )  e.  _V
271, 26eqeltri 2366 . . . . . 6  |-  Z  e. 
_V
28 pmresg 6811 . . . . . 6  |-  ( ( Z  e.  _V  /\  F  e.  ( X  ^pm  CC ) )  -> 
( F  |`  Z )  e.  ( X  ^pm  Z ) )
2927, 12, 28sylancr 644 . . . . 5  |-  ( ph  ->  ( F  |`  Z )  e.  ( X  ^pm  Z ) )
3025, 29sseldd 3194 . . . 4  |-  ( ph  ->  ( F  |`  Z )  e.  ( X  ^pm  CC ) )
3130biantrurd 494 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x )  <->  ( ( F  |`  Z )  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
3211, 13, 313bitr3d 274 . 2  |-  ( ph  ->  ( ( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  j ) )  <  x ) )  <->  ( ( F  |`  Z )  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
33 metxmet 17915 . . . 4  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
3414, 33syl 15 . . 3  |-  ( ph  ->  D  e.  ( * Met `  X ) )
35 caures.3 . . 3  |-  ( ph  ->  M  e.  ZZ )
36 eqidd 2297 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
37 eqidd 2297 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  j )  =  ( F `  j ) )
381, 34, 35, 36, 37iscau4 18721 . 2  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
39 fvres 5558 . . . 4  |-  ( k  e.  Z  ->  (
( F  |`  Z ) `
 k )  =  ( F `  k
) )
4039adantl 452 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  (
( F  |`  Z ) `
 k )  =  ( F `  k
) )
41 fvres 5558 . . . 4  |-  ( j  e.  Z  ->  (
( F  |`  Z ) `
 j )  =  ( F `  j
) )
4241adantl 452 . . 3  |-  ( (
ph  /\  j  e.  Z )  ->  (
( F  |`  Z ) `
 j )  =  ( F `  j
) )
431, 34, 35, 40, 42iscau4 18721 . 2  |-  ( ph  ->  ( ( F  |`  Z )  e.  ( Cau `  D )  <-> 
( ( F  |`  Z )  e.  ( X  ^pm  CC )  /\  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  ( F  |`  Z )  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 j ) )  <  x ) ) ) )
4432, 38, 433bitr4d 276 1  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  |`  Z )  e.  ( Cau `  D
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801    C_ wss 3165   class class class wbr 4039   dom cdm 4705    |` cres 4707   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751    < clt 8883   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   * Metcxmt 16385   Metcme 16386   Caucca 18695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-z 10041  df-uz 10247  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmet 16389  df-met 16390  df-bl 16391  df-cau 18698
  Copyright terms: Public domain W3C validator