Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbcpcp Unicode version

Theorem cbcpcp 25265
Description: The canonical bijection between a cross product and a cartesian product (whose set of indices is composed of two different elements). Bourbaki E.II.33 . (Contributed by FL, 26-Jun-2011.)
Hypotheses
Ref Expression
cbcpcp.1  |-  A  =  { I ,  J }
cbcpcp.2  |-  B  =  if ( x  =  I ,  M ,  N )
cbcpcp.3  |-  F  =  ( a  e.  M ,  b  e.  N  |->  { <. I ,  a
>. ,  <. J , 
b >. } )
cbcpcp.4  |-  I  e.  C
cbcpcp.5  |-  J  e.  D
Assertion
Ref Expression
cbcpcp  |-  ( I  =/=  J  ->  F : ( M  X.  N ) -1-1-onto-> X_ x  e.  A  B )
Distinct variable groups:    A, a,
b, x    B, a,
b    x, F    I, a,
b, x    J, a,
b, x    M, a,
b, x    N, a,
b, x
Allowed substitution hints:    B( x)    C( x, a, b)    D( x, a, b)    F( a, b)

Proof of Theorem cbcpcp
Dummy variables  f 
c  d  e  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prex 4233 . . . 4  |-  { <. I ,  a >. ,  <. J ,  b >. }  e.  _V
21rgen2w 2624 . . 3  |-  A. a  e.  M  A. b  e.  N  { <. I ,  a >. ,  <. J , 
b >. }  e.  _V
3 cbcpcp.3 . . . 4  |-  F  =  ( a  e.  M ,  b  e.  N  |->  { <. I ,  a
>. ,  <. J , 
b >. } )
43fnmpt2 6208 . . 3  |-  ( A. a  e.  M  A. b  e.  N  { <. I ,  a >. ,  <. J ,  b
>. }  e.  _V  ->  F  Fn  ( M  X.  N ) )
52, 4mp1i 11 . 2  |-  ( I  =/=  J  ->  F  Fn  ( M  X.  N
) )
6 cbcpcp.1 . . . 4  |-  A  =  { I ,  J }
7 cbcpcp.2 . . . 4  |-  B  =  if ( x  =  I ,  M ,  N )
8 cbcpcp.4 . . . 4  |-  I  e.  C
9 cbcpcp.5 . . . 4  |-  J  e.  D
106, 7, 8, 9repcpwti 25264 . . 3  |-  ( I  =/=  J  ->  X_ x  e.  A  B  =  { f  |  E. a  e.  M  E. b  e.  N  f  =  { <. I ,  a
>. ,  <. J , 
b >. } } )
113rnmpt2 5970 . . 3  |-  ran  F  =  { f  |  E. a  e.  M  E. b  e.  N  f  =  { <. I ,  a
>. ,  <. J , 
b >. } }
1210, 11syl6reqr 2347 . 2  |-  ( I  =/=  J  ->  ran  F  =  X_ x  e.  A  B )
13 elxp 4722 . . . . . 6  |-  ( x  e.  ( M  X.  N )  <->  E. e E. f ( x  = 
<. e ,  f >.  /\  ( e  e.  M  /\  f  e.  N
) ) )
14 elxp 4722 . . . . . . . . . . 11  |-  ( y  e.  ( M  X.  N )  <->  E. c E. d ( y  = 
<. c ,  d >.  /\  ( c  e.  M  /\  d  e.  N
) ) )
15 prex 4233 . . . . . . . . . . . . . . 15  |-  { <. I ,  e >. ,  <. J ,  f >. }  e.  _V
16 df-ov 5877 . . . . . . . . . . . . . . . . . 18  |-  ( e F f )  =  ( F `  <. e ,  f >. )
17 opeq2 3813 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  =  e  ->  <. I ,  a >.  =  <. I ,  e >. )
1817preq1d 3725 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  e  ->  { <. I ,  a >. ,  <. J ,  b >. }  =  { <. I ,  e
>. ,  <. J , 
b >. } )
19 opeq2 3813 . . . . . . . . . . . . . . . . . . . 20  |-  ( b  =  f  ->  <. J , 
b >.  =  <. J , 
f >. )
2019preq2d 3726 . . . . . . . . . . . . . . . . . . 19  |-  ( b  =  f  ->  { <. I ,  e >. ,  <. J ,  b >. }  =  { <. I ,  e
>. ,  <. J , 
f >. } )
2118, 20, 3ovmpt2g 5998 . . . . . . . . . . . . . . . . . 18  |-  ( ( e  e.  M  /\  f  e.  N  /\  {
<. I ,  e >. ,  <. J ,  f
>. }  e.  _V )  ->  ( e F f )  =  { <. I ,  e >. ,  <. J ,  f >. } )
22 eqtr 2313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F `  <. e ,  f >. )  =  ( e F f )  /\  (
e F f )  =  { <. I ,  e >. ,  <. J , 
f >. } )  -> 
( F `  <. e ,  f >. )  =  { <. I ,  e
>. ,  <. J , 
f >. } )
23 prex 4233 . . . . . . . . . . . . . . . . . . . . . . 23  |-  { <. I ,  c >. ,  <. J ,  d >. }  e.  _V
24 df-ov 5877 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c F d )  =  ( F `  <. c ,  d >. )
25 opeq2 3813 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( a  =  c  ->  <. I ,  a >.  =  <. I ,  c >. )
2625preq1d 3725 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( a  =  c  ->  { <. I ,  a >. ,  <. J ,  b >. }  =  { <. I ,  c
>. ,  <. J , 
b >. } )
27 opeq2 3813 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( b  =  d  ->  <. J , 
b >.  =  <. J , 
d >. )
2827preq2d 3726 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( b  =  d  ->  { <. I ,  c >. ,  <. J ,  b >. }  =  { <. I ,  c
>. ,  <. J , 
d >. } )
2926, 28, 3ovmpt2g 5998 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( c  e.  M  /\  d  e.  N  /\  {
<. I ,  c >. ,  <. J ,  d
>. }  e.  _V )  ->  ( c F d )  =  { <. I ,  c >. ,  <. J ,  d >. } )
30 eqtr 2313 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F `  <. c ,  d >. )  =  ( c F d )  /\  (
c F d )  =  { <. I ,  c >. ,  <. J , 
d >. } )  -> 
( F `  <. c ,  d >. )  =  { <. I ,  c
>. ,  <. J , 
d >. } )
31 opex 4253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  <. I ,  e >.  e.  _V
32 opex 4253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  <. J , 
f >.  e.  _V
33 opex 4253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  <. I ,  c >.  e.  _V
34 opex 4253 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  <. J , 
d >.  e.  _V
3531, 32, 33, 34preq12b 3804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( {
<. I ,  e >. ,  <. J ,  f
>. }  =  { <. I ,  c >. ,  <. J ,  d >. }  <->  ( ( <. I ,  e >.  =  <. I ,  c
>.  /\  <. J ,  f
>.  =  <. J , 
d >. )  \/  ( <. I ,  e >.  =  <. J ,  d
>.  /\  <. J ,  f
>.  =  <. I ,  c >. ) ) )
368elexi 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  I  e. 
_V
37 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  e  e. 
_V
3836, 37opth 4261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( <.
I ,  e >.  =  <. I ,  c
>. 
<->  ( I  =  I  /\  e  =  c ) )
399elexi 2810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  J  e. 
_V
40 vex 2804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  f  e. 
_V
4139, 40opth 4261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( <. J ,  f >.  = 
<. J ,  d >.  <->  ( J  =  J  /\  f  =  d )
)
42 opeq12 3814 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( e  =  c  /\  f  =  d )  -> 
<. e ,  f >.  =  <. c ,  d
>. )
4342ad2ant2l 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( I  =  I  /\  e  =  c )  /\  ( J  =  J  /\  f  =  d ) )  ->  <. e ,  f
>.  =  <. c ,  d >. )
4438, 41, 43syl2anb 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
<. I ,  e >.  =  <. I ,  c
>.  /\  <. J ,  f
>.  =  <. J , 
d >. )  ->  <. e ,  f >.  =  <. c ,  d >. )
4544a1d 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
<. I ,  e >.  =  <. I ,  c
>.  /\  <. J ,  f
>.  =  <. J , 
d >. )  ->  (
I  =/=  J  ->  <. e ,  f >.  =  <. c ,  d
>. ) )
4636, 37opth1 4260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( <.
I ,  e >.  =  <. J ,  d
>.  ->  I  =  J )
4746a1d 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( <.
I ,  e >.  =  <. J ,  d
>.  ->  ( -.  <. e ,  f >.  =  <. c ,  d >.  ->  I  =  J ) )
4847necon1ad 2526 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( <.
I ,  e >.  =  <. J ,  d
>.  ->  ( I  =/= 
J  ->  <. e ,  f >.  =  <. c ,  d >. )
)
4948adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
<. I ,  e >.  =  <. J ,  d
>.  /\  <. J ,  f
>.  =  <. I ,  c >. )  ->  (
I  =/=  J  ->  <. e ,  f >.  =  <. c ,  d
>. ) )
5045, 49jaoi 368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( <. I ,  e
>.  =  <. I ,  c >.  /\  <. J , 
f >.  =  <. J , 
d >. )  \/  ( <. I ,  e >.  =  <. J ,  d
>.  /\  <. J ,  f
>.  =  <. I ,  c >. ) )  -> 
( I  =/=  J  -> 
<. e ,  f >.  =  <. c ,  d
>. ) )
5135, 50sylbi 187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( {
<. I ,  e >. ,  <. J ,  f
>. }  =  { <. I ,  c >. ,  <. J ,  d >. }  ->  ( I  =/=  J  ->  <. e ,  f >.  =  <. c ,  d
>. ) )
5251com12 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( I  =/=  J  ->  ( { <. I ,  e
>. ,  <. J , 
f >. }  =  { <. I ,  c >. ,  <. J ,  d
>. }  ->  <. e ,  f >.  =  <. c ,  d >. )
)
53 eqeq2 2305 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( F `  <. c ,  d >. )  =  { <. I ,  c
>. ,  <. J , 
d >. }  ->  ( { <. I ,  e
>. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  <->  {
<. I ,  e >. ,  <. J ,  f
>. }  =  { <. I ,  c >. ,  <. J ,  d >. } ) )
5453imbi1d 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F `  <. c ,  d >. )  =  { <. I ,  c
>. ,  <. J , 
d >. }  ->  (
( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. )  <->  ( { <. I ,  e >. ,  <. J ,  f >. }  =  { <. I ,  c
>. ,  <. J , 
d >. }  ->  <. e ,  f >.  =  <. c ,  d >. )
) )
5552, 54syl5ibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  <. c ,  d >. )  =  { <. I ,  c
>. ,  <. J , 
d >. }  ->  (
I  =/=  J  -> 
( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) )
5630, 55syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F `  <. c ,  d >. )  =  ( c F d )  /\  (
c F d )  =  { <. I ,  c >. ,  <. J , 
d >. } )  -> 
( I  =/=  J  ->  ( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) )
5756ex 423 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( F `  <. c ,  d >. )  =  ( c F d )  ->  (
( c F d )  =  { <. I ,  c >. ,  <. J ,  d >. }  ->  ( I  =/=  J  -> 
( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) ) )
5857eqcoms 2299 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( c F d )  =  ( F `  <. c ,  d >.
)  ->  ( (
c F d )  =  { <. I ,  c >. ,  <. J , 
d >. }  ->  (
I  =/=  J  -> 
( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) ) )
5924, 29, 58mpsyl 59 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( c  e.  M  /\  d  e.  N  /\  {
<. I ,  c >. ,  <. J ,  d
>. }  e.  _V )  ->  ( I  =/=  J  ->  ( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) )
6023, 59mp3an3 1266 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( c  e.  M  /\  d  e.  N )  ->  ( I  =/=  J  ->  ( { <. I ,  e >. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) )
61 eqeq1 2302 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  <. e ,  f >. )  =  { <. I ,  e
>. ,  <. J , 
f >. }  ->  (
( F `  <. e ,  f >. )  =  ( F `  <. c ,  d >.
)  <->  { <. I ,  e
>. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )
) )
6261imbi1d 308 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  <. e ,  f >. )  =  { <. I ,  e
>. ,  <. J , 
f >. }  ->  (
( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )  <->  ( { <. I ,  e
>. ,  <. J , 
f >. }  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) )
6362imbi2d 307 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  <. e ,  f >. )  =  { <. I ,  e
>. ,  <. J , 
f >. }  ->  (
( I  =/=  J  ->  ( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
)  <->  ( I  =/= 
J  ->  ( { <. I ,  e >. ,  <. J ,  f
>. }  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) )
6460, 63syl5ibr 212 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  <. e ,  f >. )  =  { <. I ,  e
>. ,  <. J , 
f >. }  ->  (
( c  e.  M  /\  d  e.  N
)  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) ) )
6522, 64syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F `  <. e ,  f >. )  =  ( e F f )  /\  (
e F f )  =  { <. I ,  e >. ,  <. J , 
f >. } )  -> 
( ( c  e.  M  /\  d  e.  N )  ->  (
I  =/=  J  -> 
( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) )
6665ex 423 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F `  <. e ,  f >. )  =  ( e F f )  ->  (
( e F f )  =  { <. I ,  e >. ,  <. J ,  f >. }  ->  ( ( c  e.  M  /\  d  e.  N
)  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) ) ) )
6766eqcoms 2299 . . . . . . . . . . . . . . . . . 18  |-  ( ( e F f )  =  ( F `  <. e ,  f >.
)  ->  ( (
e F f )  =  { <. I ,  e >. ,  <. J , 
f >. }  ->  (
( c  e.  M  /\  d  e.  N
)  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) ) ) )
6816, 21, 67mpsyl 59 . . . . . . . . . . . . . . . . 17  |-  ( ( e  e.  M  /\  f  e.  N  /\  {
<. I ,  e >. ,  <. J ,  f
>. }  e.  _V )  ->  ( ( c  e.  M  /\  d  e.  N )  ->  (
I  =/=  J  -> 
( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) )
69683expia 1153 . . . . . . . . . . . . . . . 16  |-  ( ( e  e.  M  /\  f  e.  N )  ->  ( { <. I ,  e >. ,  <. J , 
f >. }  e.  _V  ->  ( ( c  e.  M  /\  d  e.  N )  ->  (
I  =/=  J  -> 
( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) ) )
7069com3l 75 . . . . . . . . . . . . . . 15  |-  ( {
<. I ,  e >. ,  <. J ,  f
>. }  e.  _V  ->  ( ( c  e.  M  /\  d  e.  N
)  ->  ( (
e  e.  M  /\  f  e.  N )  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) ) )
7115, 70ax-mp 8 . . . . . . . . . . . . . 14  |-  ( ( c  e.  M  /\  d  e.  N )  ->  ( ( e  e.  M  /\  f  e.  N )  ->  (
I  =/=  J  -> 
( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) )
72 fveq2 5541 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  <. c ,  d
>.  ->  ( F `  y )  =  ( F `  <. c ,  d >. )
)
7372eqeq2d 2307 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. c ,  d
>.  ->  ( ( F `
 <. e ,  f
>. )  =  ( F `  y )  <->  ( F `  <. e ,  f >. )  =  ( F `  <. c ,  d >.
) ) )
74 eqeq2 2305 . . . . . . . . . . . . . . . . 17  |-  ( y  =  <. c ,  d
>.  ->  ( <. e ,  f >.  =  y  <->  <. e ,  f >.  =  <. c ,  d
>. ) )
7573, 74imbi12d 311 . . . . . . . . . . . . . . . 16  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f >.  =  y )  <->  ( ( F `
 <. e ,  f
>. )  =  ( F `  <. c ,  d >. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) )
7675imbi2d 307 . . . . . . . . . . . . . . 15  |-  ( y  =  <. c ,  d
>.  ->  ( ( I  =/=  J  ->  (
( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f >.  =  y ) )  <->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  <. c ,  d >. )  -> 
<. e ,  f >.  =  <. c ,  d
>. ) ) ) )
7776imbi2d 307 . . . . . . . . . . . . . 14  |-  ( y  =  <. c ,  d
>.  ->  ( ( ( e  e.  M  /\  f  e.  N )  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >.
)  =  ( F `
 y )  ->  <. e ,  f >.  =  y ) ) )  <->  ( ( e  e.  M  /\  f  e.  N )  ->  (
I  =/=  J  -> 
( ( F `  <. e ,  f >.
)  =  ( F `
 <. c ,  d
>. )  ->  <. e ,  f >.  =  <. c ,  d >. )
) ) ) )
7871, 77syl5ibr 212 . . . . . . . . . . . . 13  |-  ( y  =  <. c ,  d
>.  ->  ( ( c  e.  M  /\  d  e.  N )  ->  (
( e  e.  M  /\  f  e.  N
)  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f
>.  =  y )
) ) ) )
7978imp 418 . . . . . . . . . . . 12  |-  ( ( y  =  <. c ,  d >.  /\  (
c  e.  M  /\  d  e.  N )
)  ->  ( (
e  e.  M  /\  f  e.  N )  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >.
)  =  ( F `
 y )  ->  <. e ,  f >.  =  y ) ) ) )
8079exlimivv 1625 . . . . . . . . . . 11  |-  ( E. c E. d ( y  =  <. c ,  d >.  /\  (
c  e.  M  /\  d  e.  N )
)  ->  ( (
e  e.  M  /\  f  e.  N )  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >.
)  =  ( F `
 y )  ->  <. e ,  f >.  =  y ) ) ) )
8114, 80sylbi 187 . . . . . . . . . 10  |-  ( y  e.  ( M  X.  N )  ->  (
( e  e.  M  /\  f  e.  N
)  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f
>.  =  y )
) ) )
8281com12 27 . . . . . . . . 9  |-  ( ( e  e.  M  /\  f  e.  N )  ->  ( y  e.  ( M  X.  N )  ->  ( I  =/= 
J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f
>.  =  y )
) ) )
83 fveq2 5541 . . . . . . . . . . . . 13  |-  ( x  =  <. e ,  f
>.  ->  ( F `  x )  =  ( F `  <. e ,  f >. )
)
8483eqeq1d 2304 . . . . . . . . . . . 12  |-  ( x  =  <. e ,  f
>.  ->  ( ( F `
 x )  =  ( F `  y
)  <->  ( F `  <. e ,  f >.
)  =  ( F `
 y ) ) )
85 eqeq1 2302 . . . . . . . . . . . 12  |-  ( x  =  <. e ,  f
>.  ->  ( x  =  y  <->  <. e ,  f
>.  =  y )
)
8684, 85imbi12d 311 . . . . . . . . . . 11  |-  ( x  =  <. e ,  f
>.  ->  ( ( ( F `  x )  =  ( F `  y )  ->  x  =  y )  <->  ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f
>.  =  y )
) )
8786imbi2d 307 . . . . . . . . . 10  |-  ( x  =  <. e ,  f
>.  ->  ( ( I  =/=  J  ->  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
)  <->  ( I  =/= 
J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f
>.  =  y )
) ) )
8887imbi2d 307 . . . . . . . . 9  |-  ( x  =  <. e ,  f
>.  ->  ( ( y  e.  ( M  X.  N )  ->  (
I  =/=  J  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )  <->  ( y  e.  ( M  X.  N
)  ->  ( I  =/=  J  ->  ( ( F `  <. e ,  f >. )  =  ( F `  y )  ->  <. e ,  f
>.  =  y )
) ) ) )
8982, 88syl5ibr 212 . . . . . . . 8  |-  ( x  =  <. e ,  f
>.  ->  ( ( e  e.  M  /\  f  e.  N )  ->  (
y  e.  ( M  X.  N )  -> 
( I  =/=  J  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) ) )
9089imp 418 . . . . . . 7  |-  ( ( x  =  <. e ,  f >.  /\  (
e  e.  M  /\  f  e.  N )
)  ->  ( y  e.  ( M  X.  N
)  ->  ( I  =/=  J  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
9190exlimivv 1625 . . . . . 6  |-  ( E. e E. f ( x  =  <. e ,  f >.  /\  (
e  e.  M  /\  f  e.  N )
)  ->  ( y  e.  ( M  X.  N
)  ->  ( I  =/=  J  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
9213, 91sylbi 187 . . . . 5  |-  ( x  e.  ( M  X.  N )  ->  (
y  e.  ( M  X.  N )  -> 
( I  =/=  J  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) ) )
9392imp 418 . . . 4  |-  ( ( x  e.  ( M  X.  N )  /\  y  e.  ( M  X.  N ) )  -> 
( I  =/=  J  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
9493com12 27 . . 3  |-  ( I  =/=  J  ->  (
( x  e.  ( M  X.  N )  /\  y  e.  ( M  X.  N ) )  ->  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
9594ralrimivv 2647 . 2  |-  ( I  =/=  J  ->  A. x  e.  ( M  X.  N
) A. y  e.  ( M  X.  N
) ( ( F `
 x )  =  ( F `  y
)  ->  x  =  y ) )
96 dff1o6 5807 . 2  |-  ( F : ( M  X.  N ) -1-1-onto-> X_ x  e.  A  B 
<->  ( F  Fn  ( M  X.  N )  /\  ran  F  =  X_ x  e.  A  B  /\  A. x  e.  ( M  X.  N ) A. y  e.  ( M  X.  N ) ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) ) )
975, 12, 95, 96syl3anbrc 1136 1  |-  ( I  =/=  J  ->  F : ( M  X.  N ) -1-1-onto-> X_ x  e.  A  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801   ifcif 3578   {cpr 3654   <.cop 3656    X. cxp 4703   ran crn 4706    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   X_cixp 6833
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-ixp 6834
  Copyright terms: Public domain W3C validator