Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv1h Unicode version

Theorem cbv1h 1918
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbv1h.1
cbv1h.2
cbv1h.3
Assertion
Ref Expression
cbv1h

Proof of Theorem cbv1h
StepHypRef Expression
1 cbv1h.1 . . . . 5
21sps 1739 . . . 4
32al2imi 1548 . . 3
4 ax-7 1708 . . 3
53, 4syl6 29 . 2
6 cbv1h.3 . . . . . . . 8
76com23 72 . . . . . . 7
8 cbv1h.2 . . . . . . 7
97, 8syl6d 64 . . . . . 6
109al2imi 1548 . . . . 5
11 ax9o 1890 . . . . 5
1210, 11syl6 29 . . . 4
1312al2imi 1548 . . 3
1413a7s 1709 . 2
155, 14syld 40 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1527 This theorem is referenced by:  cbv1  1919  cbv2h  1920  cbv3h  1923 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
 Copyright terms: Public domain W3C validator