Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv2h Structured version   Unicode version

Theorem cbv2h 1979
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
cbv2h.1
cbv2h.2
cbv2h.3
Assertion
Ref Expression
cbv2h

Proof of Theorem cbv2h
StepHypRef Expression
1 cbv2h.1 . . 3
2 cbv2h.2 . . 3
3 cbv2h.3 . . . 4
4 bi1 179 . . . 4
53, 4syl6 31 . . 3
61, 2, 5cbv1h 1974 . 2
7 equcomi 1691 . . . . 5
8 bi2 190 . . . . 5
97, 3, 8syl56 32 . . . 4
102, 1, 9cbv1h 1974 . . 3
1110a7s 1750 . 2
126, 11impbid 184 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549 This theorem is referenced by:  cbv2  1980  cbv2OLD  1981  eujustALT  2283 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator