Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3h Unicode version

Theorem cbv3h 2056
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
cbv3h.1
cbv3h.2
cbv3h.3
Assertion
Ref Expression
cbv3h

Proof of Theorem cbv3h
StepHypRef Expression
1 cbv3h.1 . . . 4
21a1i 11 . . 3
3 cbv3h.2 . . . 4
43a1i 11 . . 3
5 cbv3h.3 . . . 4
65a1i 11 . . 3
72, 4, 6cbv1h 2052 . 2
8 stdpc6 1695 . 2
97, 8mpg 1554 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1546 This theorem is referenced by:  cbv3  2057  cleqh  2509 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1548
 Copyright terms: Public domain W3C validator