Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv3h Structured version   Unicode version

Theorem cbv3h 1973
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
Hypotheses
Ref Expression
cbv3h.1
cbv3h.2
cbv3h.3
Assertion
Ref Expression
cbv3h

Proof of Theorem cbv3h
StepHypRef Expression
1 cbv3h.1 . . 3
21nfi 1561 . 2
3 cbv3h.2 . . 3
43nfi 1561 . 2
5 cbv3h.3 . 2
62, 4, 5cbv3 1972 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1550 This theorem is referenced by:  cleqh  2535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator