MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvab Unicode version

Theorem cbvab 2505
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1  |-  F/ y
ph
cbvab.2  |-  F/ x ps
cbvab.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvab  |-  { x  |  ph }  =  {
y  |  ps }

Proof of Theorem cbvab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5  |-  F/ x ps
21nfsb 2142 . . . 4  |-  F/ x [ z  /  y ] ps
3 cbvab.1 . . . . . 6  |-  F/ y
ph
4 cbvab.3 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
54equcoms 1688 . . . . . . 7  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
65bicomd 193 . . . . . 6  |-  ( y  =  x  ->  ( ps 
<-> 
ph ) )
73, 6sbie 2071 . . . . 5  |-  ( [ x  /  y ] ps  <->  ph )
8 sbequ 2093 . . . . 5  |-  ( x  =  z  ->  ( [ x  /  y ] ps  <->  [ z  /  y ] ps ) )
97, 8syl5bbr 251 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  y ] ps ) )
102, 9sbie 2071 . . 3  |-  ( [ z  /  x ] ph 
<->  [ z  /  y ] ps )
11 df-clab 2374 . . 3  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
12 df-clab 2374 . . 3  |-  ( z  e.  { y  |  ps }  <->  [ z  /  y ] ps )
1310, 11, 123bitr4i 269 . 2  |-  ( z  e.  { x  | 
ph }  <->  z  e.  { y  |  ps }
)
1413eqriv 2384 1  |-  { x  |  ph }  =  {
y  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   F/wnf 1550    = wceq 1649   [wsb 1655    e. wcel 1717   {cab 2373
This theorem is referenced by:  cbvabv  2506  cbvrab  2897  cbvsbc  3132  cbvrabcsf  3257  dfdmf  5004  dfrnf  5048  funfv2f  5731  abrexex2g  5927  abrexex2  5940  bnj873  28633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380
  Copyright terms: Public domain W3C validator