MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvab Unicode version

Theorem cbvab 2414
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1  |-  F/ y
ph
cbvab.2  |-  F/ x ps
cbvab.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvab  |-  { x  |  ph }  =  {
y  |  ps }

Proof of Theorem cbvab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5  |-  F/ x ps
21nfsb 2061 . . . 4  |-  F/ x [ z  /  y ] ps
3 cbvab.1 . . . . . 6  |-  F/ y
ph
4 cbvab.3 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
54equcoms 1666 . . . . . . 7  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
65bicomd 192 . . . . . 6  |-  ( y  =  x  ->  ( ps 
<-> 
ph ) )
73, 6sbie 1991 . . . . 5  |-  ( [ x  /  y ] ps  <->  ph )
8 sbequ 2013 . . . . 5  |-  ( x  =  z  ->  ( [ x  /  y ] ps  <->  [ z  /  y ] ps ) )
97, 8syl5bbr 250 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  y ] ps ) )
102, 9sbie 1991 . . 3  |-  ( [ z  /  x ] ph 
<->  [ z  /  y ] ps )
11 df-clab 2283 . . 3  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
12 df-clab 2283 . . 3  |-  ( z  e.  { y  |  ps }  <->  [ z  /  y ] ps )
1310, 11, 123bitr4i 268 . 2  |-  ( z  e.  { x  | 
ph }  <->  z  e.  { y  |  ps }
)
1413eqriv 2293 1  |-  { x  |  ph }  =  {
y  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   F/wnf 1534    = wceq 1632   [wsb 1638    e. wcel 1696   {cab 2282
This theorem is referenced by:  cbvabv  2415  cbvrab  2799  cbvsbc  3032  cbvrabcsf  3159  dfdmf  4889  dfrnf  4933  funfv2f  5604  abrexex2g  5784  abrexex2  5796  bnj873  29272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289
  Copyright terms: Public domain W3C validator