MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvab Structured version   Unicode version

Theorem cbvab 2553
Description: Rule used to change bound variables, using implicit substitution. (Contributed by Andrew Salmon, 11-Jul-2011.)
Hypotheses
Ref Expression
cbvab.1  |-  F/ y
ph
cbvab.2  |-  F/ x ps
cbvab.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvab  |-  { x  |  ph }  =  {
y  |  ps }

Proof of Theorem cbvab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cbvab.2 . . . . 5  |-  F/ x ps
21nfsb 2184 . . . 4  |-  F/ x [ z  /  y ] ps
3 cbvab.1 . . . . . 6  |-  F/ y
ph
4 cbvab.3 . . . . . . . 8  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
54equcoms 1693 . . . . . . 7  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
65bicomd 193 . . . . . 6  |-  ( y  =  x  ->  ( ps 
<-> 
ph ) )
73, 6sbie 2122 . . . . 5  |-  ( [ x  /  y ] ps  <->  ph )
8 sbequ 2138 . . . . 5  |-  ( x  =  z  ->  ( [ x  /  y ] ps  <->  [ z  /  y ] ps ) )
97, 8syl5bbr 251 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  [ z  /  y ] ps ) )
102, 9sbie 2122 . . 3  |-  ( [ z  /  x ] ph 
<->  [ z  /  y ] ps )
11 df-clab 2422 . . 3  |-  ( z  e.  { x  | 
ph }  <->  [ z  /  x ] ph )
12 df-clab 2422 . . 3  |-  ( z  e.  { y  |  ps }  <->  [ z  /  y ] ps )
1310, 11, 123bitr4i 269 . 2  |-  ( z  e.  { x  | 
ph }  <->  z  e.  { y  |  ps }
)
1413eqriv 2432 1  |-  { x  |  ph }  =  {
y  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   F/wnf 1553    = wceq 1652   [wsb 1658    e. wcel 1725   {cab 2421
This theorem is referenced by:  cbvabv  2554  cbvrab  2946  cbvsbc  3181  cbvrabcsf  3306  dfdmf  5056  dfrnf  5100  funfv2f  5784  abrexex2g  5980  abrexex2  5993  bnj873  29232
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428
  Copyright terms: Public domain W3C validator