Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbval2v Structured version   Unicode version

Theorem cbval2v 1992
 Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 4-Feb-2005.)
Hypothesis
Ref Expression
cbval2v.1
Assertion
Ref Expression
cbval2v
Distinct variable groups:   ,,   ,,   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbval2v
StepHypRef Expression
1 nfv 1629 . 2
2 nfv 1629 . 2
3 nfv 1629 . 2
4 nfv 1629 . 2
5 cbval2v.1 . 2
61, 2, 3, 4, 5cbval2 1989 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549 This theorem is referenced by:  seqf1o  11356  brfi1uzind  11707  mbfresfi  26243 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator