Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvaldva Structured version   Unicode version

Theorem cbvaldva 1994
 Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1
Assertion
Ref Expression
cbvaldva
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvaldva
StepHypRef Expression
1 nfv 1629 . 2
2 nfvd 1630 . 2
3 cbvaldva.1 . . 3
43ex 424 . 2
51, 2, 4cbvald 1986 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wal 1549 This theorem is referenced by:  cbvraldva2  2928 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator