Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalvw Structured version   Unicode version

Theorem cbvalvw 1715
 Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.)
Hypothesis
Ref Expression
cbvalvw.1
Assertion
Ref Expression
cbvalvw
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvalvw
StepHypRef Expression
1 ax-17 1626 . 2
2 ax-17 1626 . 2
3 ax-17 1626 . 2
4 ax-17 1626 . 2
5 cbvalvw.1 . 2
61, 2, 3, 4, 5cbvalw 1714 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177  wal 1549 This theorem is referenced by:  cbvexvw  1717  hba1w  1722  ax11wdemo  1738 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551
 Copyright terms: Public domain W3C validator